The N250r is a face-sensitive event-related potential (ERP) deflection whose long-term memory sensitivity remains uncertain. We investigated the possibility that long-term memory-related voltage changes are represented in the early ERP's to faces but methodological considerations could affect how these changes appear to be manifested. We examined the effects of two peak analysis procedures in the assessment of the memory-sensitivity of the N250r elicited in an old/new recognition paradigm using analysis of variance (ANOVA) and artificial neural networks (ANN's). When latency was kept constant within subjects, ANOVA was unable to detect differences between ERP's to remembered and new faces; however, an ANN was. Network interpretation suggested that the ANN was detecting amplitude differences at occipitotemporal and frontocentral sites corresponding to the N250r. When peak latency was taken into account, ANOVA detected a significant decrease in onset latency of the N250r to remembered faces and amplitude differences were not detectable, even with an ANN. Results suggest that the N250r is sensitive to long-term memory. This effect may be a priming phenomenon that is attenuated at long lags between faces. Choice of peak analysis procedures is critical to the interpretation of phasic memory effects in ERP data.