The aim of this study was to provide new data to the knowledge of mechanisms by which recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) enhance the numbers of colonies growing from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in the murine bone marrow. The in vitro technique for cultivating GM-CFC from normal bone marrow cells was used. For
evaluation of stimulatory actions of the drugs studied, the factors themselves or sera of mice given these factors were added to the cultures. The factors or the sera were present in the cultures either as the only potentially stimulatory agents or acted jointly with a suboptimum concentration of recombinant murine interleukin-3 (rmIL-3). It was found that both rhG-CSF and rmGM-CSF stimulate the proliferatio
n of GM-CFC by a combination of direct mechanisms (direct actions on the target cells) and indirect effects (effects mediated through the induction of other cytokines and/or growth factors in the murine organism). The rhGM-CSF exhibited somewhat weaker in vitro effects in comparison with
the other two factors and only indirect effects were noted. Additional
in vivo experiments documented that, in spite of differences in mechanisms of action of the individual drugs studied on murine bone marrow cells in vitro, equal in vivo doses of the factors induce quantitatively similar effects on the production of GM-CFC in vivo.
The aim of the studies was to ascertain if adenosine is able to co-operate with selected hematopoietic growth factors and cytokines, namely with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), interleukin-3 (IL-3), and interleukin-11 (IL-11), in inducing the growth of colonies from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) from normal bone marrow cells in vitro. Adenosine was found not to produce any colonies when present in the cultures as the only potential stimulator. All the tested cytokines and growth factors were observed to induce the growth of distinct numbers of GM-CFC colonies, with the exception of IL-11. When suboptimal concentrations of the evaluated cytokines and growth factors were tested in the cultures in which various concentrations of adenosine were concomitantly present, mutually potentiating effects were found in the case of IL-3 and SCF. These results confirm the role of adenosine in regulation of granulopoiesis and predict IL-3 and SCF as candidates for further in vivo studies of their combined administration with adenosine.
The aim of the study was to investigate the effects of stable adenosine receptor agonists on bone marrow hematopoiesis by utilizing the model of hematopoietic damage induced by 5-fluorouracil (5-FU), a cycle-specific cytotoxic agent. Effects of a non-selective agonist NECA activating all the known adenosine receptors (A1, A2A, A2B, A3) and of the selective agonists for A1 (CPA), A2A (CGS 21680), and A3 (IB-MECA) adenosine receptors were investigated. Experiments were performed with B10CBAF1 mice under in vivo conditions. Adenosine receptor agonists were given in single injections before 5-FU administration and the effects were determined 4 days later. The numbers of femoral marrow nucleated cells and hematopoietic progenitor cells (CFC-GM and BFU-E) were taken as indices of the effects. The non-selective agonist NECA given at a dose of 200 nmol/kg induced biphasic time-dependent effects, i.e. protection and sensitization, when given 10 h and 22 h before 5-FU administration, respectively. The use of isomolar doses of selective receptor agonists indicated that the protective effects of NECA were induced by activation of A2A and A2B receptors, while the sensitizing action of NECA was mediated via A3 receptors. In addition, it was observed that A1 receptors induced protection when activated by administration of CPA 22 h before 5-FU. These findings are discussed with respect to the action of adenosine receptor agonists on the cell cycle state and on the cell cycle-independent cellular protective mechanisms.
The potential role of adenosine receptor signalling in the amplification of haemopoietic stem cells in vivo was investigated. Elevation of extracellular adenosine in mice was induced by the joint administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate, an adenosine prodrug. The response of haemopoietic stem cells to the drug treatment was measured by endogenous spleen colony-forming assay in sublethally gamma-irradiated animals. The combination of drugs was administered before irradiation either singly or repeatedly at 24 h intervals. The results demonstrated the possibility of enhancing the spleen colony formation by the drug treatment. The highest stimulatory effect on spleen colony counts and on the colony sizes occurred after 3-4 injections of the drugs. Higher spleen colony responses were observed under injection regimens terminated 3 h before irradiation, as compared to those terminated 24 h before the radiation exposure. The results are interpreted as an evidence of the expansion of the stem cell pool. A tolerance to this stimulatory action developed after more than 3 injections of the drugs.
The purpose of the study was to describe and compare normal and 5-fluorouracil (5-FU)-suppressed hematopoiesis in adenosine A3 receptor knock-out (A3AR KO) mice and their wild-type (WT) counterparts. To meet the purpose, a complex hematological analysis comprising nineteen peripheral blood and bone marrow parameters was performed in the mice. Defects previously observed in the peripheral blood erythrocyte and thrombocyte parameters of the A3AR KO mice were confirmed. Compartments of the bone marrow progenitor cells for granulocytes/ macrophages and erythrocytes were enhanced in the control, as well as in the 5-FU-administered A3AR KO mice. 5-FU-induced hematopoietic suppression, evaluated on day 2 after the administration of the cytotoxic drug, was found to be significantly deeper in the A3AR KO mice compared with their WT counterparts, as measured at the level of the bone marrow progenitor cells. The rate of regeneration, as assessed between days 2 and 7 after 5-FU administration, was observed in the population of the granulocyte/macrophage progenitor cells to be higher in the A3AR KO mice in comparison with the WT ones. The increased depth of 5-FU-induced suppression in the compartments of the hematopoietic progenitor cells in the A3AR KO mice represents probably a hitherto undescribed further consequence of the lack of adenosine A3 receptors and indicates its synergism with the pharmacologically induced cytotoxic action of 5-FU., M. Hofer, M. Pospíšil, L. Dušek, Z. Hoferová, D. Komůrková., and Obsahuje bibliografii
Positive effects of repeated administration of diclofenac, an inhibitor of prostaglandin synthesis, in terms of prevention of tumor development and stimulation of hematopoiesis have been observed in C3H mice transplanted subcutaneously with G:5:113 fibrosarcoma cells. Fourteen-day treatment with diclofenac (3.75 mg/kg/day) started from day 5 after tumor cell transplantation. Measurements of tumors and hematological examinations were performed on day 30. The results strongly suggest the possibility that inhibitors of prostaglandin synthesis (non-steroidal anti-inflammatory drugs) may be used in oncological practice where the observed effects are highly desirable., M. Hofer, Z. Hoferová, P. Fedoročko, N. O. Macková., and Obsahuje bibliografii
An impairment of the survival of mice subjected to whole-body gamma-irradiation with a lethal dose of 10 Gy and treated with a repeated postirradiation administration of prostaglandin synthesis inhibitors (PGSls), indomcthacin or diclofenac, was observed. Morphological examination of the gastrointestinal tract and the estimation of blood loss into its lumen in animals treated with diclofenac did not show serious damage such as haemorrhages or perforation, but revealed structural injury to the intestinal mucosa indicating inflammatory processes. The lesions found arc supposed to be connected with increased intestinal permeability which leads to endotoxin escape from the gut and a subsequent increased mortality rate of irradiated animals. It may be concluded that PGSls are not suitable for the management of radiation sickness after an exposure to lethal doses of ionizing radiation
Hematopoiesis-modulating action of meloxicam, a cyclooxygenase-2 inhibitor, has been evaluated in mice. Increased serum level of granulocyte colony-stimulating factor (G-CSF) after meloxicam administration has been found in sublethally γ-irradiated animals. In further experiments hematopoiesis-stimulating effects of meloxicam and G-CSF given alone or in combination have been investigated. Granulocyte/macrophage progenitor cells counts were used to monitor these effects. Meloxicam and exogenous G-CSF did not act synergistically when given in combination, but could be mutually substituted during their repeated administration. The results suggest a promising possibility of using meloxicam as an auxiliary drug reducing the high costs of G-CSF therapy of myelosuppression., M. Hofer, M. Pospíšil, V. Znojil, J. Holá, A. Vacek, D. Štreitová., and Obsahuje bibliografii a bibliografické odkazy
The effects of diclofenac, an inhibitor of prostaglandin synthesis, were studied on the acute radiation syndrome elicited in mice by fractional irradiation. Several haematological parameters were evaluated in mice irradiated with 5x2 Gy and 3x, 4x, or 5x3 Gy (intervals between fractions 24 h) from a 60Co gamma-ray source. The animals were treated with diclofenac either before each fraction or only once before the last fraction. The survival of mice was recorded after the irradiation regimen of 5x3 Gy followed by a "top-up" dose of 3.5 Gy given 24 h after the last radiation fraction. Statistically significant enhancement of the endogenous spleen colony formation and of leukopoiesis was found in mice treated with diclofenac repeatedly, as compared with both saline-treated irradiated controls and animals administered a single diclofenac dose, if a sublethal total radiation dose had been accumulated. However, following accumulation of a lethal total radiation dose, slightly impaired survival was observed in mice given diclofenac. It follows from the results that diclofenac is a suitable drug for enhancing leukopoiesis impaired by sublethal fractionated irradiation. Nevertheless, undesirable side effects of this drug negatively influence the survival of experimental animals following a lethal accumulated radiation dose.
Recent results of the authors have demonstrated that the elevation of extracellular adenosine induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), a soluble adenosine prodrug, mediates radioprotective effects in mice. Furthermore, it has been shown that this action is induced by at least two mechanisms: (1) protection by hypoxia as a result of the effects of treatment on the cardiovascular system (bradycardia, vasodilation), and (2) an enhanced regeneration of the radiation-perturbed hematopoiesis. Here, it was ascertained that the joint use of an optimal dose of noradrenaline given with dipyridamole and AMP combination eliminates the hypothermic and hypoxic effects of the treatment, but preserves the radioprotective action of dipyridamole and AMP combination in terms of hematopoietic recovery and partially also survival enhancing effects of the drugs in gamma-irradiated mice. These findings might be of importance for attempts to obtain available and tolerable radioprotective pharmacological prescriptions for clinical use.