A cytogenetic study of bisexual species belonging to the genera Cirrorhynchus, Dodecastichus and Otiorhynchus is presented in order to confirm their taxonomic position. The karyotype characterization was accomplished by an analysis of mitotic and meiotic chromosomes after differential staining, namely by C-banding, silver impregnation, DAPI and CMA3. A review of the cytogenetic data for the tribe Otiorhynchini contributed to knowledge of chromosomal evolution in this group. An investigation of five of the species studied showed some similarities such as a sex chromosome system of "parachute type" (Xyp), the presence of 10 autosomal bivalents (2n = 22) and heterochromatin localized around centromeres. These observations are similar to those already described for Otiorhynchini species, and confirm the karyological conservatism of this weevil group. In contrast, another species Cirrorhynchus kelecsenyi has an additional four autosomal bivalents (n% = 14 + Xyp, 2n = 30), which differs considerably from the chromosomal homogeneity of the other genera. Karyotypic evolution in this species was achieved most probably by increasing the number of chromosomes by centric fissions, resulting in variation in the number of acrocentric chromosomes. DAPI-positive and CMA3-negative reactions of heterochromatic DNA in all the species studied suggest that it has an AT-rich composition. Impregnating chromosomes with silver nitrate reveals NORs on one pair of autosomes, and probably argentophilic material in the interspace between the X and y sex chromosomes. The karyological findings support the taxonomical revision of Otiorhynchini based on morphological characters.
We surveyed ladybirds (Coleoptera: Coccinellidae) in 10 stands of Scots pine (Pinus sylvestris), all monoculture stands 5–100 years old, in western Slovakia, Central Europe, over two successive periods, October 2013 – March 2014 and October 2014 – March 2015. The winter in each period was exceptionally mild. Ladybirds were collected from the lower branches of pine trees using beating trays and were present in 61% of the 1040 samples (one sample containing ladybirds from 20 branches, 1 m long each). In total 3965 individuals of 20 species were recorded. Non-conifer dwelling species associated with broadleaved trees or herbaceous plants prevailed (45% of species), followed by conifer specialists (40%) and generalists (15%). Although 13 species were found at least in one winter month, December, January or February, only four of them, Exochomus quadripustulatus, Coccinella septempunctata, Harmonia axyridis and Hippodamia variegata, were recorded continually during both winters. The number of species, the abundance of all ladybirds and the abundance of dominant species (E. quadripustulatus, C. septempunctata and H. axyridis) decreased from late autumn towards winter and remained lowest during this most adverse time of the year for ladybirds. Overwintering species assemblages of ladybirds changed over time and varied with age of pine stand. Our results suggest that Scots pine in Central Europe supports species rich assemblages of ladybirds from late autumn to early spring and, being widely distributed, it could be suited to winter surveying of ladybirds at large spatial scales to reveal behavioural and ecological responses of species to changing weather or different climates.