Antioxidant or pro-oxidant properties of epinephrine (EPI) and isoprenaline (ISO) were studied in the absence and presence of Fe2+ , Fe3+ and Cu2+ ions. EPI and ISO (>2 /tmol/1) inhibited peroxidation of low density lipoprotein (LDL) induced by 2, 2’-azobis(2-amidino-propane) (AAPH). EPI had a similar inhibitory potency as ISO, but their potency was several times higher than the potency of a-tocopherol (a-TOC). When the LDL peroxidation was induced by 5 /tmol/1 CUSO4, EPI and ISO enhanced LDL peroxidation at low concentrations (10/mol/l) and decreased peroxidation at higher concentrations (30 /tmol/1). The compounds had a similar tendency to inhibit the peroxidation of phosphatidylcholine liposomes. EPI (3-30 //¿mol/1) inhibited lipid peroxidation of phosphatidylcholine liposomes induced by 2 mmol/1 of AAPH, but it was less effective and even increased the peroxidation, when the samples contained 2 mmol/1 AAPH with 50 /¿mol/l FeSC>4 or 2 mmol/1 AAPH with 20/imol/l FeCb. Inhibition of lipid peroxidation by EPI was also observed when studying decreased oxygen consumption, when the peroxidation of linoleic acid was induced by lipoxidase. In conclusion, EPI and ISO reduced lipid peroxidation, but they exhibit pro-oxidant properties in the presence of Fe2+, Fe3+ or Cu2+ ions, depending on the catecholamine and ionic concentration.
Effects of early neonatal interventions on metabolic parameters later in life (s.c. late effects) were studied in rats using two models; namely, (a) the effects of premature weaning and (b) the effects of "dietary" manipulations during the suckling period (s.c. small vs. large litters), (a) Premature weaning of rats caused an earlier degeneration of spermiogenesis and elevated plasma cholesterol levels in adult animals when compared to levels found in animals weaned 12 days later (on day 30 after birth). In adult rats, radioiodine uptake in thyroid glands was lower in the group weaned prematurely. Premature weaning was followed by a decrease of corticosterone production in adrenal glands in adult animals; in female adult prematurely weaned rats, an elevated response of adrenal cortex to stressors was observed. Several other studies explored the "immediate" effects of early, premature weaning, (b) Early exposure to high fat diet evoked a hypercholesterolaemic response in adulthood following brief exposure to HF diet. Rats from litters reduced to 3 or 4 pups per mother on postnatal day 3 exhibited 2 days later plasma levels of cholesterol higher than in rats raised in large litters of 8 or 14. The difference between small and large litters was preserved for the whole lifespan of the animals. In adulthood, rats from small litters were fatter and had higher levels of plasma cholesterol and insulin. Other studies suggester that early dietary experience may regulate the pattern of drug metabolism in adult life. An inhibition of diurnal plasma corticosterone variation was found in rats overfed during the neonatal period and an increased stimulation of lipolysis by norepinephrine and lipogenesis by insulin was demonstrated in neonatally underfed rats. Interesting studies were reported in longitudinally studies in children: at the age of 9-12 year brest-fed children (for more than 6 months) had the highest cholesterol levels; on the other hand significantly increased levels of APO B, Apo Al, ATH index and Apo/B Apo A1 quotient (p<0.05) were found in the nonbreast-fed group (27 references).
Selected parameters of lipid metabolism were studied in a group of 76 children aged 12-13 years. The children were divided into 4 subgroups according to the duration of neonatal nutrition (no breast feeding, breast feeding for 3, 6 or more than 6 months). We studied the concentration of total serum cholesterol, its distribution into lipoprotein fractions, the concentration of serum triacylglycerols and apolipoproteins Ai (Apo Ai) and B (Apo B). Atherogenic indexes were calculated from the data obtained. The highest cholesterol levels (5.20 ±0.15 mmoU-1) were found in children who had been breast-fed for more than 6 months, while the highest concentrations of Apo B (0.80 ±0.07 g.r1) and Apo Ai (1.76 ±0.06 g.l-1) and the highest Apo B/Apo Ai ratio (0.45 ±0.04) were found in children with the shortest period of breast-feeding. No significant sex-related differences in total, VLDL, LDL, HDL cholesterol, triacylglycerols and apolipoproteins were observed.