The aims of our study were to investigate into the effect of lithium on smooth muscle contraction and phosphorylation of myosin light chain (MLC20) by MLCK and to find out the clue of its mechanism. Isolated rabbit duodenum smooth muscle strips were used to study the effects of lithium on their contractile activity under the condition of Krebs’ solution by means of HW-400S constant temperature smooth muscle trough. Myosin and MLCK were purified from the chicken gizzard smooth muscle. Myosin phosphorylation was determined by Glycerol-PAGE, myosin Mg2+-ATPase activity was measured by Pi liberation method. Lithium (10-40 mM) inhibited the contraction in duodenum in a dose-related and time-dependent manner. Lithium could also inhibit the extent of myosin phosphorylation in a dose-related and time-dependent manner, whereas it inhibited Mg2+-ATPase activity in a dose-rel ated manner. Lithium inhibited smooth muscle contraction by inhibition of myosin phosphorylation and Mg2+-ATPase activity., Z. Y. Tang, Z. N. Liu, L. Fu, D. P. Chen, Q. D. Ai, Y. Lin., and Obsahuje bibliografii
Generation of reactive oxygen species significantly contributes to the pathogenesis of acute renal failure (ARF) induced by myoglobin release. Ginsenosides (GS), the principal active ingredients of ginseng, is considered as an extremely good antioxidative composition of Chinese traditional and herbal drugs. The purpose of the present study was to investigate the protective effect of ginsenoside in rats with ARF on the changes of cholinergic nervous system in the kidney as well as on the involvement of mitogen-activated protein kinases (MAPK) in the hypothalamic paraventricular nuclei (PVN). In our assay, glycerolinduced acute renal failure in rats was employed to study the protective effects of ginsenoside. Our results indicated that the treatment of ARF rats with ginsenosides for 48 h significantly reduced lipid peroxidation, restored the superoxide dismutase (SOD) level. Meanwhile, the obvious increase of choline acetyltransferase-immunoreactivity (ChAT-IR) in the proximal convoluted tubular cells (PCT) was observed by immunohistochemistry in ARF+GS group. The same effect was also observed in the changes of p-ERK1/2-IR in the hypothalamic paraventricular nuclei. Our results suggest that ginsenoside administered orally may have a strong renal protective effect against glycerol-induced ARF, reduce the renal oxidative stress, and ginsenoside can also activate the cholinergic system in PCT, simultaneously MAPK signal pathway in the PVN was also activated., J. Zhou, H. A. Zhang, Y. Lin, H. M. Liu, Y. M. Cui, Y. Xu, N. Zhao, J. M. Ma, K. Fan, C. L. Jiang., and Obsahuje bibliografii
The main regulatory mechanism of smooth muscle contraction involves Ca2+/calmodulin (CaM)-dependent phosphorylation of myosin (CDPM), by myosin light chain kinase (MLCK). It is also known that the increase in intracellular Ca2+ and phosphorylation of myosin occurs within a short time under physiological conditions, but the muscle tension may persist for a longer period of time. However, the mechanism of this phenomenon is still not clear. We hypothesize that MLCK also phosphorylates myosin in a Ca2+/CaM-independent manner (CIPM). The difference between CIPM and CDPM are as follows. Firstly, the extent of CIPM by MLCK was temperature-independent, whereas CDPM by MLCK was apparently decreasing with increasing temperature. Secondly, in contrast to the decreased extent of CDPM, the prolongation of incubation time did not decrease the extent of CIPM. Thirdly, a high concentration of K+ influences CIPM less than CDPM. Furthermore, the MLCK inhibitor ML-9 significantly inhibited CDPM by MLCK but not CIPM by MLCK. Lastly, arachidonic acid selectively increased CIPM by MLCK but not CDPM by MLCK. Finally, the activity of Mg2+-ATPase of myosin followed the sequence as this: CDPM > CIPM > unphosphorylated myosin. Our results revealed some primary features of CIPM by MLCK.