In a previous study we demonstrated that acute footshock stress increased glutathione peroxidase activity in the prefrontal cortex and striatum of adult male rats. Adolescents may respond differently to stress as life stressors may be greater than at other ages. The present study examined the effects of the acute footshock stress on superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities and thiobarbituric acid reactive substances (TBARS) levels in adolescent male and female rat brains. We demonstrated that acute footshock stress increased SOD activity in the prefrontal cortex, and increased GPx activity in the hippocampus in female rats. In males, acute footshock stress increased GPx activity in the prefrontal cortex and hippocampus. Footshock stress did not change TBARS levels. These results indicate a strong role of gender in the response of adolescent subjects to various aspects of stress.
In the present study, we investigated whether erythropoietin (Epo) has a protective effect against cytotoxicity induced by interferon-gamma (IFN-
γ) and lipopolysaccharide (LPS) in primary rat oligodendrocyte cultures. The possible modulatory effect of erythropoietin on inducible nitric oxide synthase (iNOS) mRNA expression and nitrite production were also analyzed. Erythropoietin exerted a significant protective effect against IFN-γ and LPS-induced oligodendrocyte injury as determined by lactate dehydrogenase assay. Treatment with erythropoietin inhibited the expression of iNOS mRNA and nitrite production resulting from proinflammatory stimulation by IFN-γ and LPS. These results suggest that erythropoietin has protective effects against inflammatory oligodendrocyte injury in vitro and may play a protective role in neurological disorders characterized by oligodendrocyte death, such as multiple sclerosis.