The aim of this paper is to establish an existence and uniqueness result for a class of the set functional differential equations of neutral type \left\{ {\begin{array}{*{20}c} {D_H X(t) = F(t,X_t ,D_H X_t ),} // {\left. X \right|_{\left[ { - r,0} \right]} = \Psi ,} // \end{array} } \right. where F: [0, b]× C_{0}x L_{0}^{1}\rightarrow K_{c}(E)) is a given function, Kc(E) is the family of all nonempty compact and convex subsets of a separable Banach space E, C0 denotes the space of all continuous set-valued functions X from [−r, 0] into Kc(E), L_{0}^{1} is the space of all integrally bounded set-valued functions X: [−r, 0] → Kc(E), Ψ \in C_{0} and D_{H} is the Hukuhara derivative. The continuous dependence of solutions on initial data and parameters is also studied., Umber Abbas, Vasile Lupulescu, Donald O’Regan, Awais Younus., and Obsahuje seznam literatury