The prediction of traffic accident duration is great significant for rapid disposal of traffic accidents, especially for fast rescue of traffic accidents and re- moving traffic safety hazards. In this paper, two methods, which are based on artificial neural network (ANN) and support vector machine (SVM), are adopted for the accident duration prediction. The proposed method is demonstrated by a case study using data on approximately 235 accidents that occurred on freeways located between Dalian and Shenyang, from 2012 to 2014. The mean absolute error (MAE), the root mean square error (RMSE) and the mean absolute percentage error (MAPE) are used to evaluate the performances of the two measures. The conclusions are as follows: Both ANN and SVM models had the ability to predict traffic accident duration within acceptable limits. The ANN model gets a better result for long duration incident cases. The comprehensive performance of the SVM model is better than the ANN model for the traffic accident duration prediction.
Soil water and salinity conditions of the riparian zones along the Tarim River, northwest China, have been undergoing alterations due to water use by human or climate change, which is expected to influence the riparian forest dominated by an old poplar, Populus euphratica. To evaluate the effects of such habitat alterations, we examined photosynthetic and growth performances of P. euphratica seedlings across experimental soil water and salinity gradients. Results indicated that seedlings were limited in their physiological performance, as evidenced by decreases in their height and biomass, and the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), the effective quantum-use efficiency of PSII (Fv′/Fm′), and photochemical quenching (qP) under mild (18% soil water content, SWC; 18.3 g kg-1 soil salt content, SSC) and moderate (13% SWC, 22.5 g kg-1 SSC) water or salinity stress. However, seedlings had higher root/shoot ratio (R/S), increased nonphotochemical quenching (NPQ), and water-use efficiency (WUE) relative to control under such conditions. Under severe (8% SWC, 27.9 g kg-1 SSC) water or salinity stress, P. euphratica seedlings had only a fifth of biomass of those under control conditions. It was also associated with damaged PSII and decreases in WUE, the maximal net photosynthetic rate (P Nmax), light-saturation point (LSP), and apparent quantum yield (α). Our results suggested that the soil conditions, where P. euphratica seedlings could grow normally, were higher than ∼13% for SWC, and lower than ∼22.5 g kg-1 for SSC, the values, within the seedlings could acclimate to water or salinity stress by adjusting their R/S ratio, improving WUE to limit water loss, and rising NPQ to dissipate excessive excitation energy. Once SWC was lower than 8% or SCC higher than ∼28 g kg-1, the seedlings suffered from the severe stress. and J. Y. Li ... [et al.].
The riparian forests along the Tarim River, habitats for Populus euphratica establishment, are subjected to frequent flooding. To elucidate adaptive strategies that enable this species to occupy the riparian ecosystem subjected to seasonal or permanent water-logging, we examined functional characteristics of plant growth, xylem water relations, leaf gas exchange, chlorophyll (Chl) content and fluorescence, soluble sugar and malondialdehyde (MDA) content in P. euphratica seedlings flooded for 50 d. Although flooded seedlings kept absorbing carbon throughout the experiment, their shoot and root growth rates were lower than in non-flooded seedlings. The reduced leaf gas exchange and quantum efficiency of PSII of flooded seedlings resulted possibly from the reduction in total Chl content. Content of soluble sugar and malondialdehyde in leaves were higher in flooded than in control seedlings. Soil flooding induced hypertrophy of lenticels and increased a stem diameter. These responses were responsible for species survival as well as its success in this seasonally flooded riparian zone. Our results indicate that P. euphratica is relatively flood-tolerant due to a combination of morphological, physiological, and biochemical adjustments, which may support its dominance in the Tarim riparian forest., B. Yu, C. Y. Zhao, J. Li, J. Y. Li, G. Peng., and Obsahuje bibliografii
Autophagy and poly(ADP-ribose) polymerase 1 (PARP-1) are activated and involved in a series of cell processes under oxidative stress, which is associated with pathogenesis of atherosclerosis. Research on their relationship under oxidative stress has been limited. In this study, we aimed to investigate the activation, relationship, and role of autophagy and PARP-1 in vascular smooth muscle cell (VSMC) death under oxidative stress. This study ex-plored the signal molecule PARP-1 and autophagy in VSMCs using gene silencing and the hydrogen peroxide (H2O2)-stimulated oxidative stress model. We observed that H2O2 could induce autophagy in VSMCs, and the inhibition of autophagy could protect VSMCs against oxidative stress-mediated cell death. Meanwhile, PARP-1 could also be activated by H2O2. Additionally, we analysed the regulatory role of PARP-1 in oxidative stress-mediated autophagy and found that PARP-1 was a novel factor involved in the H2O2-induced autophagy via the AMPK-mTOR pathway. Finally, PARP-1 inhibition protected VSMCs against caspase-dependent apoptosis. These data suggested that PARP-1 played a critical role in H2O2-mediated autophagy and both of them were involved in apoptosis of VSMCs. and Corresponding author: Guoxian Qi