Calling songs of the sibling species Cicada barbara and C. orni were studied in sympatric and allopatric populations on the Iberian Peninsula, where the distribution ranges of both species overlap. No difference was found in any acoustic property for the sympatric and allopatric populations of C. barbara studied and only one variable (minimum frequency) was significantly different between sympatric and allopatric populations of C. orni. No hybrids with intermediate songs were found and no character displacement in the calling song was detected. It is very likely that these species were already considerably differentiated when they met on the Iberian Peninsula. Particularly, premating (or even postmating) isolating mechanisms (according to Mayr's Biological Species Concept) or different specific-mate recognition systems (in the view of the Paterson's Recognition Concept of Species) were most likely already present, which prevented hybridization between this pair of species. It is assumed that the calling songs are the most important premating isolating mechanism corresponding to the specific-mate recognition systems of these species of cicadas.
We review the cicada genus Auritibicen Lee, 2015 based on the description of ten new species: A. aethus sp. n., A. daoxianensis sp. n., A. pallidus sp. n., A. rotundus sp. n., A. curvatus sp. n., A. purus sp. n., A. parvus sp. n., A. gracilis sp. n., A. septatus sp. n. and A. lijiangensis sp. n. Auritibicen shikokuanus (Kato, 1959) is confirmed to be a synonym of Auritibicen kyushyuensis (Kato, 1926). Diagnoses and descriptions, along with illustrations of the structure of male genitalia, are provided for all Auritibicen species. The systematics of Auritibicen is elucidated using both morphological and molecular characterization. Thirty-five morphological characters of the 24 species of Auritibicen and one outgroup taxon, Chremistica ochracea (Walker, 1850), were scored. Morphological phylogenetic analyses reveal the relationships among related species of Auritibicen, which are supported by a number of morphological characters. The mitochondrial gene fragments of Cytochrome Oxidase I (COI) of 11 species of Auritibicen and two outgroup Lyristes species were analyzed and yielded identical robust phylogenetic trees. The phylogram based on a Bayesian analysis of both morphological and molecular data is similar to the ML/BI topologies based only on the molecular data. The molecular phylogenetic analysis indicates that species of Auritibicen are structured phylogeographically, with related species clustered into three lineages. The divergence time estimated based on molecular data indicates that the divergence of Auritibicen from Lyristes occurred during the Miocene, and the most recent common ancestor (tMRCA) of Auritibicen evolved during the Pliocene. However, the time when the main divergence events of species of Auritibicen occurred was the Pleistocene. From the combination of the phylogeny and updated geographical distributions, we infer that the center of distribution of Auritibicen could be Southwest China (e.g., Sichuan and Yunnan Provinces), from where species of this genus spreaded northeastwards to Shaanxi, Hubei and other provinces along the Qinling and Daba Mountains, then further northeastwards to Hebei Province in China and also to Far East Russia, the Korean Penisula, and Japan.
The seven taxa of the cicada genus Tibicina (T.corsica corsica, T. corsica fairmairei, T. garricola, T. haematodes, T. nigronervosa, T. quadrisignata, T. tomentosa) which occur in continental France and Corsica were investigated. Extrinsic factors (geographical barriers) and factors intrinsic to the ecology of species were considered in an effort to understand the biogeography of Tibicina. Three patterns related to intrinsic factors were recognised: (1) pairs of taxa with sympatric distributions but with divergent habitat preferences; (2) pairs of taxa with sympatric distributions and similar habitat but with allochronic occurrence; (3) pairs of taxa with similar ecology but with allopatric distributions. When taxa were separated by their habitat, the height of vegetation appeared to be more important than the floristic composition of the habitat. These factors lead to the partitioning of resources in time and space. All taxa occur in secondary vegetations. Human agro-pastoral activity has probably influenced the dynamics of cicada populations and the maintenance of isolation between them.
Measurements of body temperature in the field demonstrate that Cicada orni Linnaeus regulates body temperature through behavioral mechanisms. Behavior is used to regulate body temperature to a range necessary for calling. As predicted, results showed a general decrease of echeme duration and an increase in inter-echeme interval with rising body temperature. However, no statistically significant correlations of body temperature for any of the variables studied were found, giving evidence that there is more variability in call parameters between individuals than any effect of body temperature. and Allen F. Sanborn, Paula C. Simões, Polly K. Phillips, José A. Quartau.