We prove that a rank ≥3 Dowling geometry of a group H is partition representable if and only if H is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable., František Matúš and Aner Ben-Efraim., and Obsahuje bibliografické odkazy
If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).