Data hiding methods are used to carry information from one place to another. Digital watermarking is one of the data hiding methods. Imperceptibility and capacity are the conflicting parameters in digital watermarking. The more the embedded information, lower the imperceptibility and vice versa. Imperceptibility factor (IF) is measured as peak signal to noise ratio (PSNR) of the image after embedding information. No such schemes exist in the literature in which an image can be chosen that may carry a desired capacity, while keeping imperceptibility as high as possible. In this scheme a two stage fuzzy rule based system (FRBS) is designed to choose the image among the list that is capable of holding desired capacity while achieving high imperceptibility at the same time. Validity of the proposed scheme is checked through simulation results of different types of images like natural and medical. Moreover, the proposed scheme is also robust against JPEG compression attack.
This article deals with the issue of competence of so-called vulnerable persons and the possibility of making valid informed consent. The theory of competence is here perceived as a task oriented competence. Subsequently, the capacity of the patient to give informed consent is analyzed. Here, the difference between the so-called general competence and specific competence is analyzed, as well as the difference between degree conception of competence and threshold conception of competence. The relation between competence and consequences of performed medical procedure is also specified. Finally, the article describes how these theoretical approaches are reflected in medical as well as legal practice. and Tento článek se zabývá problematikou kompetence tzv. vulnerabilních osob a možnosti učinit validní informovaný souhlas. V článku je řešena nejprve teorie kompetence, která je vnímaná jako kompetence k plnění určitého úkolu (task oriented competence). Následně je rozebírána přímo kompetence pacienta k udělení informovanému souhlasu. Rozebrán je rozdíl mezi tzv. obecnou kompetencí a specifickou kompetencí, dále rozdíl mezi stupňovitou kompetencí a kompetencí hraniční. Specifikován je i poměr mezi kompetencí a následky provedeného zdravotního výkonu. Konečně je pak popsáno, jak se tyto teoretické přístupy odrážejí do medicínské, ale i právní praxe.
Real liquids are compressible. The compressibility of liquids is described by modulus of elasticity (or by coefficient of volume compressibility) analogous to solids. A value of modulus of elasticity at liquids depends on many factors, above all on volume of free gases in liquids and further on pressure and temperature of liquids. and Skutečné kapaliny jsou stlačitelné. Stlačitelnost kapalin je určena modulem pružnosti (resp. součinitelem objemové stlačitelnosti) podobně jako u pevných látek. Velikost modulu pružnosti u kapalin závisí na mnoha faktorech, zejména na obsahu volných plynů v kapalinách a dále na tlaku a teplotě kapalin.
Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev’s inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces., Takao Ohno, Tetsu Shimomura., and Obsahuje seznam literatury
We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities., Takao Ohno, Tetsu Shimomura., and Obsahuje seznam literatury
We develop a theory of removable singularities for the weighted Bergman space ${\mathcal A}^p_\mu (\Omega )=\lbrace f \text{analytic} \text{in} \Omega \: \int _\Omega |f|^p \mathrm{d}\mu < \infty \rbrace $, where $\mu $ is a Radon measure on $\mathbb{C}$. The set $A$ is weakly removable for ${\mathcal A}^p_\mu (\Omega \setminus A)$ if ${\mathcal A}^p_\mu (\Omega \setminus A) \subset \text{Hol}(\Omega )$, and strongly removable for ${\mathcal A}^p_\mu (\Omega \setminus A)$ if ${\mathcal A}^p_\mu (\Omega \setminus A) = {\mathcal A}^p_\mu (\Omega )$. The general theory developed is in many ways similar to the theory of removable singularities for Hardy $H^p$ spaces, $\mathop {\mathrm BMO}$ and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable. In the case when weak and strong removability are the same for all sets, in particular if $\mu $ is absolutely continuous with respect to the Lebesgue measure $m$, we are able to say more than in the general case. In this case we obtain a Dolzhenko type result saying that a countable union of compact removable singularities is removable. When $\mathrm{d}\mu = w\mathrm{d}m$ and $w$ is a Muckenhoupt $A_p$ weight, $1<p<\infty $, the removable singularities are characterized as the null sets of the weighted Sobolev space capacity with respect to the dual exponent $p^{\prime }=p/(p-1)$ and the dual weight $w^{\prime }=w^{1/(1-p)}$.
Link-capacity functions are the relationships between the fundamental traffic variables like travel time and the flow rate. These relationships are important inputs to the capacity-restrained traffic assignment models. This study investigates the prediction of travel time as a function of several variables V/C (flow rate/capacity), retail activity, parking, number of bus stops and link type. For this purpose, the necessary data collected in Izmir, Turkey are employed by Artificial Neural Networks (ANNs) and Regression-based models of multiple linear regression (MLR) and multiple non-linear regression (MNLR). In ANNs modelling, 70% of the whole dataset is randomly selected for the training, whereas the rest is utilized in testing the model. Similarly, the same training dataset is employed in obtaining the optimal values of the coefficients of the regression-based models. Although all of the variables are used in the input vector of the models to predict the travel time, the most significant independent variables are found to be V/C and retail activity. By considering these two significant input variables, ANNs predicted the travel time with the correlation coefficient R = 0.87 while this value was almost 0.60 for the regression-based models.
Tento článek se zabývá problematikou způsobilosti nezletilých k udělení souhlasu s poskytováním zdravotních služeb. První část článku se věnuje problematice posouzení vyspělosti nezletilých a jejich schopnosti činit samostatná rozhodnutí. Dále článek přináší krátkou komparativní část, která v obecné rovině popisuje přístupy jednotlivých států k problematice udělení souhlasu s poskytováním zdravotních služeb. Následně je pak analyzována česká právní úprava způsobilosti nezletilých k udělení souhlasu s poskytováním zdravotních služeb a důsledky této úpravy pro praxi., This article is focused on the examination of the law concerning medical treatment of minors, that is, persons under the age of 18. The first part of this article discusses whether persons under the age of 18 may be regarded as being capable of consenting to medical treatment and the problem of the maturity. Further this article brings short comparative overview of the laws concerning medical treatment of minors in different countries. And finally the last part analyzes the capacity to consent of the minors under the current Czech laws., and Tomáš Doležal.