Fruit of two almond, Prunus amygdalus Linnaeus, cultivars (Retsou and Truoito) containing diapausing larvae of Eurytoma amygdali Enderlein, were collected in early August from coastal areas in northern Greece. Some larvae were removed from the fruit and maintained singly in open plastic vials and others left in the fruit until the end of the low-temperature period. They were kept at a low temperature of 10°C from the beginning, or after 8 weeks at 20°C. The larvae were subsequently maintained at 20°C and whether they completed the two diapause stages was recorded for 60 more weeks. When the larvae in vials, were kept initially for 8 weeks at 20°C, most of those from Retsou and all of those Truoito almonds completed the first stage of diapause. Of the larvae in the fruits, most of those in Truoito but less than 50% of those in Retsou almonds completed the first stage of diapause after 8 weeks at 20°C. Larvae from different orchards and different almond cultivars differed in diapause intensity. When the larvae were kept at a low temperature of 10°C from the beginning for 4, 8 or 16 weeks and then at 20°C they completed the second diapause stage synchronously, but the time of completion was delayed, and depended on the duration of the low temperature treatment. In several cases the time to diapause completion was bimodally distributed and the relative size of peak depended on the duration of the early exposure to low temperature.
Effect of photoperiod on the duration of summer and winter diapause was investigated in the cabbage butterfly, Pieris melete. By keeping naturally induced aestivating and hibernating pupae under various photoperiods, it was shown that diapause duration of aestivating pupae was significantly longer at long than at short daylengths, whereas diapause duration of hibernating pupae was significantly shorter at long than at short daylengths, suggesting both aestivating and hibernating pupae require opposite photoperiodic signals to promote diapause development. By transferring diapausing pupae, induced under various photoperiods, to 20°C with a naturally changing summer daylength, the diapause induced by short daylengths was easier to terminate than diapause induced by long daylengths. When naturally induced aestivating and hibernating pupae were kept under natural conditions, aestivating pupae had a long diapause (mean 155 days) and wide range of emergence (90 days), whereas hibernating pupae had a short diapause (mean 105 days) and a relatively synchronized emergence (lasted 30 days). Finally, the ecological significance of photoperiodic regulation of diapause duration is discussed.
Photoperiodic control of diapause termination was systematically investigated in Pseudopidorus fasciata. In 24 h light-dark cycles, the rate of diapause termination in this species depended on photoperiod. The critical night length (CNL) for diapause termination was 10 h, 0.5 h shorter than that for diapause induction. Night-interruption experiments with T = 24 showed that diapause was effectively terminated when the scotophases separated by light pulse were shorter than the critical night length (10 h); no developing individuals were found if the duration of the pre-interruption scotophase or the post-interruption scotophase exceeded the CNL. A 15-min light pulse was sufficient to reverse the effect of long night when it was placed 8 h after lights-off. Resonance experiments with a constant photophase of 12 h or 16 h and various scotophases of 4-80 h showed an hourglass-type photoperiodic response, where no rhythmicity was found. In another resonance experiment with constant scotophase of 8 h and various photophases of 4-72 h, all individuals developed into cocoons. In the Bünsow experiment, the response curve showed two apparent peaks for diapause termination, one being 8 h after lights-off, and another 8 h before lights-on. However, there was no periodic rhythmicity, which again indicates an hourglass principle. The results lead to the conclusion that the same photoperiodic clock mechanism (a long-night measuring hourglass) is involved in both diapause induction and termination.