Lake Śniardwy is the largest among more than 7000 Polish lakes. So far, it has not been a subject of detailed investigations concerning long-term changes in water temperature or ice regime. A considerable change in thermal and ice conditions has been observed in the period 1972–2019. Mean annual water temperature increased by 0.44°C dec–1 on average, and was higher than an increase in air temperature (0.33°C dec–1). In the monthly cycle, the most dynamic changes occurred in April (0.77°C dec–1). In the case of ice cover, it appeared increasingly later (5.3 days dec–1), and disappeared earlier (3.0 days dec–1). The thickness of ice cover also decreased (2.4 cm dec–1). Statistical analysis by means of a Pettitt test showed that the critical moment for the transformations of the thermal and ice regime was the end of the 1980’s. In addition to the obvious relations with air temperature for both characteristics, it was evidenced that the occurrence of ice cover depended on wind speed and snow cover. The recorded changes in the case of Lake Śniardwy are considered unfavourable, and their consequences will affect the course of physical, chemical, and biological processes in the largest lake in Poland.
In the present study, experiments were conducted in a large-scale flume to investigate the issue of local scour around side-by-side bridge piers under both ice-covered and open flow conditions. Three non-uniform sediments were used in this experimental study. Analysis of armour layer in the scour holes around bridge piers was performed to inspect the grain size distribution curves and to study the impact of armour layer on scour depth. Assessments of grain size of deposition ridges at the downstream side of bridge piers have been conducted. Based on data collected in 108 experiments, the independent variables associated with maximum scour depth were assessed. Results indicate that the densimetric Froude number was the most influential parameter on the maximum scour depth. With the increase in grain size of the armour layer, ice cover roughness and the densimetric Froude number, the maximum scour depth around bridge piers increases correspondingly. Equations have been developed to determine the maximum scour depth around bridge piers under both open flow and ice covered conditions.
Ice jams in northern rivers during winter period significantly change the flow conditions due to the extra boundary of the flow. Moreover, with the presence of bridge piers in the channel, the flow conditions can be further complicated. Ice cover often starts from the front of bridge piers, extending to the upstream. With the accumulation of ice cover, ice jam may happen during early spring, which results in the notorious ice jam flooding. In the present study, the concentration of flowing ice around bridge piers has been evaluated based on experiments carried out in laboratory. The critical condition for the initiation of ice cover around bridge piers has been investigated. An equation for the critical floe concentration was developed. The equation has been validated by experimental data from previous studies. The proposed model can be used for the prediction of formation of ice cover in front of a bridge pier under certain conditions.
Recent studies have shown that the presence of ice cover leads to an intensified local scour pattern in the vicinity of bridge piers. To investigate the local scour pattern in the vicinity of bridge pier under ice-covered flow condition comparing to that under open channel flow condition, it is essential to examine flow field around bridge piers under different flow conditions. In order to do so, after creation of smooth and rough ice covers, three-dimensional timeaveraged velocity components around four pairs of bridge piers were measured using an Acoustic Doppler velocimetry (ADV). The ADV measured velocity profiles describe the difference between the velocity distributions in the vicinity of bridge piers under different covered conditions. Experimental results show that the vertical velocity distribution which represents the strength of downfall velocity is the greatest under rough covered condition which leads to a greater scour depth. Besides, results show that the turbulent intensity increases with pier size regardless of flow cover, which implies that larger scour depth occurs around piers with larger diameter.