This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application of the constrained robust adaptive stabilization design leads to the solution of the constrained robust output regulation problem in the sense that the output tracking error is constrained within the prescribed barrier limit while asymptotically approaching to zero and the closed loop signals are all bounded for all the time. A numerical example is provided to illustrate the performance of the proposed control.
Gröbner bases for modules are used to calculate a generalized linear immersion for a plant whose solutions to its regulation equations are polynomials or pseudo-polynomials. After calculating the generalized linear immersion, we build the controller which gives the robust regulation.
This paper investigates the distributed event-triggered cooperative output regulation problem for heterogeneous linear continuous-time multi-agent systems (MASs). To eliminate the requirement of continuous communication among interacting following agents, an event-triggered adaptive distributed observer is skillfully devised. Furthermore, a class of closed-loop estimators is constructed and implemented on each agent such that the triggering times on each agent can be significantly reduced while at the same time the desired control performance can be preserved. Compared with the existing open-loop estimators, the proposed estimators can provide more accurate state estimates during each triggering period. It is further shown that the concerned cooperative output regulation problem can be effectively resolved under the proposed control scheme and the undesirable Zeno behavior can be excluded. Finally, the effectiveness of the proposed results is verified by numerical simulations.
An adaptive output regulation design method is proposed for a class of output feedback systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model approach is developed in the present study that successfully converts the global robust output regulation problem into a robust adaptive stabilization problem for the augmented system. Moreover, an output feedback controller is achieved based on a type of state filter which is designed for the transformed augmented system. The adaptive control technique is successfully introduced to the stabilization design to ensure the global stability of the closed-loop system. The result can successfully apply to a tracking control problem associated with the well known Van der Pol oscillator.