a1_Vascular repair in response to injury or stress (often referred to as remodeling) is a common complication of many cardiovascular abnormalities including pulmonary hypertension, systemic hypertension, atherosclerosis, vein graft remodeling and restenosis following balloon dilatation of the coronary artery. It is not surprising that repair and remodeling occurs frequently in the vasculature in that exposure of blood vessels to either excessive hemodynamic stress (e.g. hypertension), noxious blood borne agents (e.g. atherogenic lipids), locally released cytokines, or unusual environmental conditions (e.g. hypoxia), requires readily available mechanisms to counteract these adverse stimuli and to preserve structure and function of the vessel wall. The responses, which were presumably evolutionarily developed to repair an injured tissue, often escape self-limiting control and can result, in the case of blood vessels, in lumen narrowing and obstruction to blood flow. Each cell type (i. e. endothelial cells, smooth muscle cells, and fibroblasts) in the vascular wall plays a specific role in the response to injury. However, while the roles of the endothelial cells and smooth muscle cells (SMC) in vascular remodeling have been extensively studied, relatively little attention has been given to the adventitial fibroblasts. Perhaps this is because the fibroblast is a relatively ill-defined cell which, at least compared to the SMC, exhibits few specific cellular markers. Importantly though, it has been well demonstrated that fibroblasts possess the capacity to express several functions such as migration, rapid proliferation, synthesis of connective tissue components, contraction and cytokine production in response to activation or stimulation., a2_The myriad of responses exhibited by the fibroblasts, especially in response to stimulation, suggest that these cells could play a pivotal role in the repair of injury. This fact has been well documented in the setting of wound healing where a hypoxic environment has been demonstrated to be critical in the cellular responses. As such it is not surprising that fibroblasts may play an important role in the vascular response to hypoxia and/or injury. This paper is intended to provide a brief review of the changes that occur in the adventitial fibroblasts in response to vascular stress (especially hypoxia) and the role the activated fibroblasts might play in hypoxia-mediated pulmonary vascular disease., K. R. Stenmark, D. Bouchey, R. Nemonoff, E. C. Dempsey, M. Das., and Obsahuje bibliografii
Micropatterned surfaces have been used as a tool for controlling the extent and strength of cell adhesion, the direction of cell growth and the spatial distribution of cells. In this study, chemically micropattern ed surfaces were prepared by successive plasma polymerization of acrylic acid (AA) and 1,7-octadiene (OD) through a mask. Rat vascular smooth muscle cells (VSMC), bovine endothelial cells (EC), porcine mesenchymal stem cells (MSC) or human skeletal muscle cells (HSKMC) were seeded on these surfaces in densities from 9,320 cells/cm2 to 31,060 cells/cm2. All cell types adhered and grew preferentially on the strip-like AA domains. Between day 1 and 7 after seeding, the percentage of cells on AA domains ranged from 84.5 to 63.3 % for VSMC, 85.3 to 73.5 % for E, 98.0 to 90.0 % for MSC, and 93.6 to 55.0 % for HSKMC. The enzyme-linked immunosorbent assay (ELISA) revealed that the concentration of alpha-actin per mg of protein was significantly higher in VSMC on AA. Similarly, immunofluorescence staining of von Willebrand factor showed more apparent Weibel-Palade bodies in EC on AA domains. MSC growing on AA had better developed beta-actin cytoskeleton, although they were less stained for hyaluronan receptor (CD44). In accordance with this, MSC on AA contained a higher concentration of beta-actin, although the concentration of CD44 was lower. HSKMC growing on AA had a better developed alpha-actin cytoskeleton. These results based on four cell types suggest that plasma polymerization is a suitable method for producing spatially defined patterned surfaces for controlled cell adhesion, proliferation and maturation., E. Filová ... [et al.]., and Obsahuje seznam literatury
The growth capacity of cultured vascular smooth muscle cells (VSMC) obtained from the thoracic aorta of 8-week-old male and female spontaneously hypertensive rats (SHR) was compared. Explants from the intima- media complex were cultured in Dulbecco minimum essential medium supplemented with fetal calf serum (10 %). The migration of VSMC out of the explants started on day 2 in both sexes but on day 18 the number of explants with VSMC migration was 100 ±32 explants/flask in male VSMC and only 24 ±5 explants/flask in female ones. The doubling time at the early exponential phase of growth was shorter (13.5 ±0.5 h) and the p H]-thymidine Labelling Index was higher (34.0±2.3 %) in male VSMC than in those from females (19.9±0.6 h and 23.9±1.9 %, p<0.01, respectively). The difference in the doubling time became even more apparent in the late exponential phase of growth (male VSMC: 51.8±2.0 h, female VSMC: 91.5±5.8 h, p<0.001). Moreover, at the end of the exponential growth phase, the male VSMC reached significantly higher (pcO.OOl) maximum population density than VSMC from females. Our data provide evidence of different growth characteristics of cultured VSMC isolated from male and female SHR aortas.