The paper deals with a novel method of control system design which applies meromorphic transfer functions as models for retarded linear time delay systems. After introducing an auxiliary state model a finite-spectrum observer is designed to close a stabilizing state feedback. The observer finite spectrum is the key to implement a state feedback stabilization scheme and to apply the affine parametrization in controller design. On the basis of the so-called RQ-meromorphic functions an algebraic solution to the problem of time-delay system stabilization and control is presented that practically provides a finite spectrum assignment of the control loop.
A cascade scheme for passivity-based stabilization of a wide class of nonlinear systems is proposed in this paper. Starting from the definitions and basic concepts of passivity-based stabilization via feedback (which are applicable to minimum phase nonlinear systems expressed in their normal forms) a cascade stabilization scheme is proposed for minimum and non-minimum phase nonlinear systems where the constraint of stable zero dynamics imposed by previous stabilization approaches is abandoned. Simulation results of the proposed algorithm are presented to demonstrate its performance.