This paper reports an investigation into the composition of gypsum from Kobeřice locality (Czech Republic). The X-ray diffraction along with FTIR spectroscopy and thermal analysis show that almost pure gypsum occurs mainly in autochthonous horizons. While allochthonous clastic deposition is represented by gypsum containing also calcite, quartz, clay minerals and organic matter., Pavel Konečný, Eva Plevová, Lenka Vaculíková, Alena Kožušníková, Janka Peterková and Marianna Hundáková., and Obsahuje bibliografii
The molten reactor core-concrete interaction, which describes the effect of molten reactor spread on the concrete oor of the reactor cavity, is a very complex process to simulate and predict, but the knowledge of this process is of major importance for planning the emergency counteractions for severe accidents with respect to the Stress Tests requirements after the Fukushima-Daiichi accident. The key issue is to predict the rate and most probable focusation of the melt-through process which is affected by the concrete composition, especially by the aggregate type. A limited number of small-scale experiments have been conducted over the past years along with accompanying numerical models which focused mainly on the siliceous type of aggregate. It is common for the concrete structures that the limestone type or the mixture of these two types of aggregate are used as well. Then, the objective of this paper is to extend the knowledge gained from the experiments with the siliceous aggregate to the concrete structures which are made of limestone aggregate or their combination, such as limestone sand and siliceous gravel. The proposed one-dimensional model of the melt-through process is based on the fuzzy-logic interpretation of the thermodynamic trends which reflect the aggregate type. This approach allows estimating the asymptotic cases in terms of the melt-through depth in the concrete oor over time with respect to the aggregate type, which may help to decide the rather expensive further experimental efforts.
In the frame of advanced studies of coal structure the temperature conditions of coal origin were investigated through thermal stability of aluminum complexes in coal substance. These compounds were discovered by solid-state nuclear magnetic resonance measurements of 27Al as a part of coal substance closely bonded to organic mass of coal. In obtained spectra, Al-hexaphenoxide and Al-tetrahydroxy-diphenoxide complexes were identified. These complexes were further prepared and their thermal stability tested by thermal analysis method. It was found that a) they can originate under room temperature and atmospheric pressure and b) they are thermally stable only up to approximately 85 or 95 °C. As both Al-hexaphenoxide and Al-tetrahydroxy-diphenoxide complexes are the integrated constituents of coal substance it can be deduced that, in the beginning, coal was formed under very mild thermal conditions. As investigated materials, coals and clays from the Czech basins and gagatite from Poland were measured., Pavel Straka and Jana Náhunková., and Obsahuje bibliografii
The reactivity of a char depends very on the parent coal. Much information about correlation between properties of coal and reactivity of chars is lost by using only standard methods for a large dataset evaluation. In this research a set of 8 coals has been investigated by thermal analysis and reactivity of obtained chars was analyzed as a function of properties of parent coal properties using Canonical correlation analysis. The reactivity of chars was determined by thermogravimetric analysis of nonisothermal combustion in oxygen. It can be stated that methods of multivariate data analysis are useful tools for the interpretation of coal chars reactivity data., Mariusz Minkina, Elwira Zajusz-Zubek and Andrzej Mianowski., and Obsahuje bibliografii