Many biological processes involve globular transport proteins belonging to a family called lipocalins. The prominent feature in lipocalin structure is their specific tertiary conformation forming eight-stranded beta barrel with capacity to bind various ligands inside. The importance of lipocalins is evident from the list of vital substances (Hydrophobic ligands including vitamin A, steroids, bilins, lipids, pheromones etc.) that these proteins transport and from their high expression levels in various tissues. Among wide spectrum of lipocalins, Major Urinary Proteins (Mup) and Odorant Binding Proteins (Obp) are well known for their capacity to bind and carry odorants / pheromones and have been studied to detail in various mammalian models including mice, rats, and hamsters. However, many lipocalins (also including Mups) have previously been described with respect to their protective function in mammalian organism where they transport potentially harmful molecules to a degradation site (e. g. lysozomes) or straight out of the body. As most of lipocalins share similar tertiary structure, their potential role in both transport and excretion processes may be additive or complementary. In addition to a role of lipocalins in chemical communication this review presents lipocalins from the point of view of the "toxic waste hypothesis". This hypothesis assumes that members of lipocalins that are linked to a metabolic degradation of their ligands were an ideal source for natural selection during evolution due to an ability of potential receivers to detect lipocalin ligands levels as a signal by other individuals.
Specific transcription factors participate in the decision making process that controls cell fate and differentiation. They function in the environment of chromatin and directly affect its structure and activity. This influence is especially apparent during the development regulation of gametes and in the course of the development of an early embryo. This review focuses on the role that Snf2h (Smarca 5) and Brg1 (Smarca 4), two factors belonging to the SWI/SNF2 family, play in the establishment of chromatin structure in germinal and early embryonic development.