Currently it remains difficult to obtain robust microsatellite markers for Lepidoptera. In an attempt to overcome the problems associated with developing microsatellite markers for this insect order we combined (i) biotin-enrichment protocol, (ii) next generation pyrosequencing (through 454 GS-FLX Titanium technology) and (iii) the use of individuals collected from eight geographically distant European populations representing three subspecies of Euphydryas aurinia. Out of 96 stringently designed primer pairs, 12 polymorphic microsatellite loci amplified without obvious evidence of null alleles in eight individuals from different subspecies. Between five and seven of these loci showed full within population applicability and three revealed to be robust and transferable between populations and sub-species, providing a first step towards the development of a valuable and robust tool for studying conservation issues and evolution in E. aurinia populations. Nevertheless, as in most studies dealing with Lepidoptera microsatellites, null alleles were detected in most of the developed markers. Our results emphasize the need for further research in order to better understand the complex evolution and organization of Lepidopteran genomes. and Melthide Sinama, Vincent Dubut, Caroline Costedoat, André Gilles, Marius Junker, Thibaut Malausa, Jean-François Martin, Gabriel Nève, Nicolas Pech, Thomas Schmitt, Marie Zimmermann, Emese Meglécz.
The butterfly Proclossiana eunomia (Lepidoptera: Nymphalidae) was discovered at a single locality in the Czech Republic in 1963. Until the 1980s, it was known from a restricted area, from which it spontaneously expanded during the 1980s to other localities up to 23 km from the source population. Samples were collected in 2002 from the source and ten other populations, totalling 274 specimens. All samples were analysed by electrophoresis for four polymorphic loci. Mean heterozygosity decreased with distance from the source population; this suggested a process of stepping stone colonization, involving the loss of rare alleles along the way. The populations close to the source population (less then ca. 15 km) retain a similar heterozygosity, whereas populations further away have a much reduced heterozygosity. Such a pattern of genetic differentiation and founder effect within a region is typical of specialized species with relatively low dispersal ability. The high level of genetic polymorphism found in the Šumava populations suggests that populations of this northern species in temperate-zone mountains are not just outposts of otherwise huge northern distribution, but represent genuine phylogeographic refugia. Survival of such species depends on the survival of the source population and of a sufficiently dense network of habitat patches.
Thermal requirements for flight in butterflies is determined by a combination of external factors, behaviour and physical constraints. Thorax temperature of 152 butterflies was monitored with an infra-red thermometer in controlled laboratory conditions. The temperature at take-off varied from 13.4°C, for a female Heteronympha merope to 46.3°C, for a female Junonia villida. Heteronympha merope, an understorey species, had the lowest recorded take-off temperatures, with females flying at a much lower thorax temperatures than males. Among the tested butterfly species, warming-up rate was positively correlated with take-off temperature and negatively with body mass. Wing loading is a major variable in determining the thorax flight temperature. Butterflies with the highest wing-loadings experienced the highest thorax temperatures at take-off. A notable exception to this rule is Trapezites symmomus, the only Hesperiidae of our data set, which had thorax flight temperatures of 31.5°C and 34.5°C, well within the range of the observed butterflies, despite a wing load ca. five times higher. The high thorax temperature recorded in J. villida is probably linked to its high flight speed. The results highlight the importance of physical constraints such as body size on the thermal requirements for flight across a range of butterfly species., Gabriel Nève, Casey Hall., and Obsahuje bibliografii