The aims were to explore the effect of head-up tilt (HUT) to 30 and 60 degrees on hemodynamics and tissue oxygenation in anesthetized healthy swine. The data serve as a reference for a study of resuscitation efficacy at HUT such as during transport. Nine healthy swine (49±4 kg) were anesthetized and multiple sensors including myocardial pressure-volume loops catheter, carotid flow probe, blood pressure catheters, near infrared spectroscopy (NIRS) tissue oximetry and mixed venous oximetry (SVO2) catheter were introduced and parameters continuously recorded. Experimental protocol consisted of baseline in supine position (15 min), 30 degrees HUT (15 min), recovery at supine position (15 min) and 60 degrees HUT (5 min). Vacuum mattress was used for body fixation during tilts. We found that 30 and 60 degrees inclination led to significant immediate reduction in hemodynamic and oximetry parameters. Mean arterial pressure (mm Hg) decreased from 98 at baseline to 53 and 39, respectively. Carotid blood flow dropped to 47 % and 22 % of baseline values, end diastolic volume to 49 % and 53 % and stroke volume to 47 % and 45 % of baseline. SVO2 and tissue oximetry decreased by 17 and 21 percentage points. The values are means. In conclusions, within minutes, both 30 and 60 degrees head-up tilting is poorly tolerated in anesthetized swine. Significant differences among individual animals exist., M. Mlcek, J. Belohlavek, M. Huptych, T. Boucek, T. Belza, S. Lacko, P. Krupickova, M. Hrachovina, M. Popkova, P. Neuzil, O. Kittnar., and Obsahuje bibliografii
Extracorporeal membranous oxygenation (ECMO) is increasingly used in the management of refractory cardiac arrest. Our aim was to investigate early effects of ECMO after prolonged cardiac arrest. In fully anesthetized swine (48 kg, N=18) ventricular fibrillation (VF) was induced and untreated period (20 min) of cardiac arrest commenced, followed by 60 min extracorporeal reperfusion (ECMO flow 100 ml/kg.min). Hemodynamics, arterial blood gasses, plasma potassium, tissue oximetry (StO2) and cardiac (EGM) and cerebral (BIS) electrophysiological parameters were continuously recorded and analyzed. Within 3 minutes of VF hemodynamic and oximetry parameters fall abruptly while metabolic parameters destabilize gradually over 20 minutes peaking at pH 7.04±0.05, pCO2 89±14 mmHg, K+ 8.5±1.6 mmol/l. During reperfusion most parameters restore rapidly: within 3-5 minutes mean arterial pressure reaches >40 mmHg, StO2 >50 %, paO2 >100 mmHg, pCO2 <50 mmHg, K+ <5 mmol/l. EGMs mean amplitude peaks at 4.5±2.4 min. Cerebral activity (BIS>60) reappeared in 5 animals after 87±21 min. In 12/18 animals return of spontaneous circulation was achieved. In conclusions, ECMO provides rapid restitution of internal milieu even after prolonged arrest. However, despite normalization of global parameters full recovery was not guaranteed since cardiac and cerebral electrical activities were sufficiently restored only in some animals. More sensitive and organ specific indicators need to be identified in order to estimate adequacy of cardiac support devices., M. Mlček, ... [et al.]., and Obsahuje seznam literatury
Operations in the pleural cavity are connected with circulatory changes in pulmonary circulation and general changes of hemodynamics. These changes are influenced by the position of patient’s body on the operation table and by the introduction of artificial pneumothorax. Thoracoscopy is an advanced surgical approach in thoracic surgery, but its hemodynamic effect is still not known. The aim of the present study was to compare the hemodynamic response to surgeries carried out by open (thoracotomy - TT) and closed (thoracoscopy - TS) surgical approach. Thirty-eight patients have been monitored throughout the operation - from the introduction of anesthesia to completing the surgery. Monitored parameters were systolic blood pressure (BPs), diastolic blood pressure (BPd), O2 saturation (SaO2), systolic blood pressure in pulmonary artery (BPPAs), diastolic blood pressure in pulmonary artery (BPPAd), wedge pressure (PW), central venous pressure in right atrium (CVP), cardiac output (CO) and total peripheral resistance (TPR). No significant difference has been found in hemodynamic response between TT and TS groups. Significant changes of hemodynamic parameters occurring during the whole surgical procedure were detected in both technical approaches. The most prominent changes were found after the position of patients was changed to the hip position (significantly decreased BPs, BPd, MAP, SaO2 and BPPAs) and 5 min after the pneumothorax was established (restoration of the cardiac output to the initial value and significant decrease of the TPR). It can be concluded that the thoracoscopy causes almost identical hemodynamic changes like the thoracotomy., S. Trča ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
As traditional risk factors are unable to fully explain the pathogenesis of coronary artery disease (CAD), novel mechanisms became a target of many investigations. Our aim was to study the response of selected markers to physical exercise. High-sensitive C-reactive protein (hs-CRP), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), advanced oxidation protein products (AOPP), soluble receptor for advanced glycation end-products (sRAGE), pregnancy-associated plasma protein A (PAPP-A), E-selectin, vascular endothelial growth factor (VEGF) and B-type natriuretic peptide (BNP) levels were measured in serum of 21 CAD patients and in 22 healthy controls at rest and after exercise bicycle stress test performed up to the maximal tolerated effort. At rest, hs-CRP, AOPP, MMP-9 and BNP were significantly elevated in the CAD patients as compared with controls. In contrast, P-selectin was significantly lower in CAD patients and a tendency to lower levels of sRAGE was noted. After exercise MMP-9 and BNP, increased significantly in both groups. In conclusions, CAD patients have elevated hs-CRP, AOPP, MMP-9 and BNP - novel markers related to cardiovascular risk or left ventricular overload. MMP-9 and BNP increase significantly with exercise in both healthy individuals and CAD patients., V. Danzig ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The biochemical model of excitation-contraction coupling in cardiomyocyte is presented and the validity of simulations of both physiological and pathological processes is discussed. The model of regulatory and actomyosin subsystems, even if it is rather simple in its regulatory subunit, gives results well consistent with experimental data. Specifically, intracellular free calcium levels ([Ca2+]i) were computed under various states of sarcoendoplasmic reticular Ca2+-ATPase (SERCA2) and compared to experimental findings. Computed results reproduced well both the increase in resting [Ca2+]i level and the attenuation of [Ca2+]i decline commonly observed in heart failure. Thus the computational simulations could help to identify core relations in studied systems by comparing results obtained using similar models of various complexities., M. Mlček, J. Neumann, O. Kittnar, V. Novák., and Obsahuje bibliografii
Glucocorticoids (GCs) are steroid hormones produced by the adrenal cortex in reaction to stress stimuli. GCs production is not stable over a 24-hour period; the plasma concentration peaks in the morning (approximately upon awakening) and then the plasma levels decrease, reaching the nadir in the evening. In our experiments, the levels of cortisol, cortisone, DHEA and DHEAS were tested in young female pigs (n=23) during heart catheterization at two different day times (in the morning and in the afternoon). The non-parametric Mann-Whitney test for statistical analysis was used. We found only minimal statistical differences in studied markers between the morning and afternoon group (p>0.05). The absence of circadian variation in GCs levels could originate either at an early age of our experimental pigs, or in stressful conditions on the experiment day, or most likely the day before (e.g. social isolation, fasting, transport, and catheterization), respectively. We can conclude there is no difference in the stress load between morning and afternoon experiments, and therefore we can assume the stress load is not a limiting factor for the timing when catheterization should be preferably performed., H. Skarlandtová ... [et al.]., and Obsahuje seznam literatury
Monophasic action potential (MAP) recording plays an important role in a more direct view of human myocardial electrophysiology under both physiological and pathological conditions. The procedure of MAP measuring can be simply performed using the Seldinger technique, when MAP catheter is inserted through femoral vein into the right ventricle or through femoral artery to the left ventricle. The MAP method represents a very useful tool for electrophysiological research in cardiology. Its crucial importance is based upon the fact that it enables the study of the action potential (AP) of myocardial cell in vivo and, therefore, the study of the dynamic relation of this potential with all the organism variables. This can be particularly helpful in the case of arrhythmias. There are no doubts that physiological MAP recording accuracy is almost the same as transmembrane AP as was recently confirmed by anisotropic bidomain model of the cardiac tissue. MAP recording devices provide precise information not only on the local activation time but also on the entire local repolarization time course. Although the MAP does not reflect the absolute amplitude or upstroke velocity of transmembrane APs, it delivers highly accurate information on AP duration and configuration, including early afterdepolarizations as well as relative changes in transmembrane diastolic and systolic potential changes. Based on available data, the MAP probably reflects the transmembrane voltage of cells within a few millimeters of the exploring electrode. Thus MAP recordings offer the opportunity to study a variety of electrophysiological phenomena in the in situ heart (including effects of cycle length changes and antiarrhythmic drugs on AP duration)., S.-G. Yang, O. Kittnar., and Obsahuje bibliografii a bibliografické odkazy
Early recognition of collapsing hemodynamics in pulmonary embolism is necessary to avoid cardiac arrest using aggressive medical therapy or mechanical cardiac support. The aim of the study was to identify the maximal acute hemodynamic compensatory steady state. Overall, 40 dynamic obstructions of pulmonary artery were performe d and hemodynamic data were collected. Occlusion of only left or right pulmonary artery did not lead to the hemodynamic collapse. When gradually obstructing the bifurcation, the right ventri cle end-diastolic area expanded proportionally to pulmonary artery mean pressure from 11.6 (10.1, 14.1) to 17.8 (16.1, 18.8) cm 2 (p<0.0001) and pulmonary artery mean pressure increased from 22 (20, 24) to 44 (41, 47) mmHg (p<0.0001) at the poin t of maximal hemodynamic compensatory steady state. Sim ilarly, mean arte rial pressure decreased from 96 (87, 101) to 60 (53, 78) mmHg (p<0.0001), central venous pressure increased from 4 (4, 5) to 7 (6, 8) mmHg (p<0.0001), heart rate increased from 92 (88, 97) to 147 (122, 165) /min (p<0.0001), contin uous cardiac output dropped from 5.2 (4.7, 5.8) to 4.3 (3.7, 5.0) l/min (p=0.0023), modified shock index increased from 0.99 (0.81, 1.10) to 2.31 (1.99, 2.72), p<0.0001. In conclusion, in stead of continuous cardiac output all of the analyzed parameters can sensitively determine the individual maximal compensatory response to obstructive shock. We assume their monitoring can be used to predict the critical phase of the hemodynamic status in routine practice., J. Kudlička ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Negative expiratory pressure (NEP) applied at the mouth during tidal expiration provides a non-invasive method for detecting expiratory flow limitation. Forty-two children were studied, i.e. 25 children with different respiratory symptoms (R) and 17 without any respiratory symptoms (NR). Children were examined without any sedation. A preset NEP of -5 cm H 2 O was applied; its duration did not exceed duration of tidal expiration. A significance of FL was judged by determining of a flow-limited range (in % of tidal volume). FL was found in 48 % children of R group. No patient of the NR group elicited FL (P<0.001 R vs. NR). The frequency of upper airway collapses was higher in R group (12 children) than in NR gr oup (5 children). In conclusion, a high frequency of tidal FL in the R group was found, while it was not present in NR group. A relatively high frequency of expiratory upper airway collapses was found in both groups, but it did not differ significantly. NEP method represents a reasonable approach for tidal flow limitation testing in non-sedated preschool children., A. Jiřičková, J. Šulc, P. Pohunek, O. Kittnar, A. Dohnalová, J Kofránek., and Obsahuje bibliografii
Gestational diabetes mellitus (GDM) represents additional risks to both mother and infant. Moreover it increases a woman's risk of cardiovascular disease in the postpartum. The aim of our study was therefore to detect changes of both the QT dispersion and the electrical heart field that could be typical for GDM. Body surface potential maps were obtained using the Cardiac 112.2 device from 26 young women with GDM and 54 young healthy pregnant women in the 36th week of pregnancy. The same recordings were obtained from 18 healthy women in the same age (19-36 years). The average QT dispersion (±SD) in women suffering from GDM was significantly higher (107±25 ms) both than in those with physiological pregnancy (73±18 ms) and than in the normal subjects (34±12 ms) (P<0.001). Moreover we have found in GDM patients shorter QRS complex 82.0±6.8 ms vs. 89.5±8.2 ms in healthy pregnant women and 90.8±7.9 ms in the control group (p=0.011), more horizontal electrical heart axis [16.4±20.1° vs. 42.4±28.7° and 74.6±39.2° respectively (P<0.05)] and lower some depolarization and repolarization amplitudes on isopotential and isointegral maps. According to these results we suppose that described electrocardiographic changes reflect a deterioration of the complete process of ventricular depolarization and repolarization in GDM., E. Medová, ... [et al.]., and Obsahuje seznam literatury