The purpose of this study was to assess the endocrine status, thoracic impedance, blood concentration, and hemodynamic dose-responses using different angles of passive head-up tilt (HUT) ranging from 12° to 70° in the same subjects. Measurements were performed during 20 min supine position (pre-HUT), 30 min upright (HUT12, HUT30, HUT53, or HUT70), and 20 min supine (post-HUT); subjects 70 min in the supine position only (HUT0) served as resting controls. Norepinephrine increased above resting control values by 19, 44, 80, and 102 %; epinephrine by 30, 41, 64, and 68 %; aldosterone by 29, 62, 139, and 165 %; plasma renin activity n. s., 41, 91, and 89 %; vasopressin n.s., 27, 47, and 59 %; thoracic bioimpedance n. s., 8, 13, and 16 %; heart rate n. s., 5, 26, and 45 %, and mean arterial pressure n. s., 5, 7, and 10 %; at min 27 of HUT12, HUT30, HUT53, and HUT70, respectively. Pulse pressure decreased with HUT53 and HUT70 by 4 and 10 %. Hematocrit increased by 0.2, 1.7, 6.3, and 7.2 %, respectively. Blood density increased by 2.3 and 3.0 g/l, plasma density by 1.7 and 1.8 g/l with HUT53 and HUT70. After finishing HUT, heart rate fell to values which stayed below pre-HUT, and also below resting control levels for ł 5 min ("post-orthostatic bradycardia") even after the lowest orthostatic load (HUT12). Thoracic impedance and arterial pressure remained increased after terminating HUT30, HUT53, and HUT70. In conclusion, passive orthostatic loading of different extent produces specific dose-responses of different magnitude in the endocrine system, blood composition, thoracic impedance, and hemodynamic variables. The heart rate is depressed even after HUT12, while arterial blood pressure and thoracic impedance exceed pre-stimulus levels after greater head-up tilt, indicating altered cardiovascular response after passive orthostasis., Z. László, A. Rössler, H. G. Hinghofer-Szalkay., and Obsahuje bibliografii
Cardiovascular dynamic and variability data are commonly used in experimental protocols involving cognitive challenge. Usually, the analysis is based on a sometimes more and sometimes less well motivated single specific time resolution ranging from a few seconds to several minutes. The present paper aimed at investigating in detail the impact of different time resolutions of the cardiovascular data on the interpretation of effects. We compared three template tasks involving varying types of challenge, in order to provide a case study of specific effects and combinations of effects over different time frames and using different time resolutions. Averaged values of hemodynamic variables across an entire protocol confirmed typical findings regarding the effects of mental challenge and social observation. However, the hemodynamic response also incorporates transient variations in variables reflecting important features of the control system response. The fine-grained analysis of the transient behavior of hemodynamic variables demonstrates that information that is important for interpreting effects may be lost when only average values over the entire protocol are used as a representative of the system response. The study provides useful indications of how cardiovascular measures may be fruitfully used in experiments involving cognitive demands, allowing inferences on the physiological processes underlying the responses., H. K. Lackner, J. J. Batzel, A. Rössler, H. Hinghofer-Szalkay, I. Papousek., and Obsahuje bibliografii
The purpose of this study was to investigate plasma concentrations of cyclic guanosine monophosphate (cGMP) and atrial natriuretic peptide (ANP) during and after real and simulated space flight. Venous blood was obtained 3 min after the beginning and 2 min after the lower body negative pressure maneuver in two cosmonauts preflight (supine), inflight, and postflight (supine) and in five other subjects before, at the end, and 4 days after a 5-day head-down tilt (-6°) bed rest. In cosmonaut 1 (10 days in space), plasma cGMP fell from preflight 4.3 to 1.4 nM on flight day 6, and was 3.0 nM on the fourth day after landing. In cosmonaut 2 (438 days in space), it fell from preflight 4.9 to 0.5 nM on on flight day 3, and stayed <0.1 nM with 5, 9, and 14 months in space, as well as on the fourth day after landing. Three months after the flight his plasma cGMP was back to normal (6.3 nM). Cosmonaut 2 also displayed relatively low inflight ANP values but returned to preflight level immediately after landing. In a ground-based simulation on five other persons, supine plasma cGMP was reduced by an average of 30 % within 5 days of 6° head-down tilt bed rest. The data consistently demonstrate lowered plasma cGMP with real and simulated weightlessness, and a complete disappearance of cGMP from plasma during, and shortly after long-duration space flight., A. Rössler, V. Noskov, Z. László, V.V. Polyakow, H. G. Hinghofer-Szalkay., and Obsahuje bibliografii