Cardiovascular prosthetic bypass grafts do not endothelialize spontaneously in humans, and so they pose a thrombotic risk. Seeding with cells improves thei r performance, particularly in small-caliber applications. Knitted tubular polyethylene- terephthalate (PET) vascular pros theses (6 mm) with commercial type I collagen (PET/Co) were modified in the lumen by the adsorption of laminin (LM), by coating with a fibrin network (Fb) or a combination of Fb and fibronectin (Fb/FN). Primary human saphenous vein endothelial cells were seeded (1.50 × 10 5 /cm 2 ), cultured for 72 h and exposed to laminar shear stress 15 dyn/cm 2 for 40 and 120 min. The control static grafts were excluded from shearing. The cell adherence after 4 h on PET/Co, PET/Co +LM, PET/Co +Fb and PET/Co +Fb/ FN was 22 %, 30 %, 19 % and 27 % of seeding, respectively. Comp ared to the static grafts, the cell density on PET/Co and PET/Co +LM dropped to 61 % and 50 %, respectively, after 120 min of flow. The cells on PET/Co +Fb and PET/Co +Fb/FN did not show any detachment during 2 h of shear stress. Pre-coating the clinically-used PET/Co vascular prosthesis with LM or Fb/FN adhesive protein assemblies promotes the adherence of endothelium. Cell retention under flow is improved particularly on fibrin-containing (Fb and Fb/FN) surfaces., J. Chlupáč ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Understanding the behavior of single proteins at the polyelectrolyte multilayer film/solution interface is of prime importance for the designing of bio-functionalized surface coatings. In the present paper, we study the adsorption of the model proteins, albumin and lysozyme, as well as basic fibroblast growth factor (FGF-2) on a polysaccharide multilayer film composed of quaternized chitosan and heparin. Several analytical methods were used to describe the formation of the polysaccharide film and its interactions with the proteins. Both albumin and lysozyme adsorbed on quaternized chitosan/heparin films, however this process strongly depended on the terminating polysaccharide. Protein adsorption was driven mainly by electrostatic interactions between protein and the terminal layer of the film. The effective binding of FGF-2 by the heparinterminated film suggested that other interactions could also contribute to the adsorption process. We believe that this FGF-2- presenting polysaccharide film may serve as a biofunctional surface coating for biologically-related applications., M. Kumorek, D. Kubies, T. Riedel., and Obsahuje bibliografii
This comparative study of various surface treatments of commercially available implant materials is intended as guidance for orientation among particular surface treatment methods in term of the cell reaction of normal human osteoblasts and blood coagulation. The influence of physicochemical surface parameters such as roughness, surface free energy and wettability on the response of human osteoblasts in the immediate vicinity of implants and on the blood co agulation was studied. The osteoblast proliferation was monitored and the expression of tissue mediators (TNF-α , IL-8, MMP-1, bone alkaline phosphatase, VCAM-1, TGF-β ) was evaluated after the cell cultivation onto a wide range of commercially available materials (titanium and Ti6Al4V alloy with various surface treatments, CrCoMo alloy, zirconium oxide ceramics, polyethylene and carbon/carbon composite). The formation of a blood clot was investigated on the samples immersed in a freshly drawn whole rabbit blood using scanning electron microscope. The surfaces with an increased osteoblast proliferation exhibited particularly higher surface roughness (here Ra > 3.5 μm) followed by a high polar part of the surface free energy whereas the effect of wettability played a minor role. The surface roughness was also the main factor regulating the blood coagulation. The blood clot formation analys is showed a rapid coag ulum formation on the rough titanium-based surfaces. The titanium with an etching treatment was considered as th e most suitable candidate for healing into the bone tissue due to high osteoblast proliferation, the highest production of osteogenesis markers and low production of inflammatory cytokines and due to the most intensive blood clot formation., D. Kubies ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy