The aim of this study was to investigate the effects of calcium channel blockers on tertbutyl hydroperoxide (TBH) induced liver injury using isolated perfused rat hepatocytes. Rat hepatocytes were immobilized in agarose threads and perfused with Williams E medium. Hepatocyte injury was induced by the addition of tertbutyl hydroperoxide (1 mM) to the perfusion medium 30 min after the addition of either verapamil or diltiazim. Hepatocyte injury was observed by monitoring the functional and metabolic competence of hepatocytes or by ultrastructural morphological examination of hepatocytes. Verapamil (0.5 mM) reduced lactate dehydrogenase leakage in TBH-injured hepatocytes as compared to the controls (154± 11 % vs. 247± 30 %). Lipid peroxides production was reduced after verapamil pretreatment as compared to the controls and oxygen consumption was increased by pretreatment of hepatocytes with verapamil. Verapamil pretreatment increased the protein synthesis activity at both levels of granular endoplasmic reticulum and free polysomes in cytoplasm and decreased ATPase activity. Diltiazem was qualitatively effective as verapamil. It is concluded that in hepatocyte oxidative injury, calcium channel blockers exhibited hepatoprotective properties. The hepatoprotective effect of calcium channel blockers was accompanied by a decrease in ATPase activity, which may implicate a normalization of Ca2+i after TBH intoxication., H. Farghali, E. Kmoníčková, H. Lotková, J. Martínek., and Obsahuje bibliografii
Cardiotoxicity ranks among the most serious adverse effects of some cytostatics. The cardiac effects of repeated i.v. administration of a new antineoplastic agent, dimethoxybenfluron (once a week, 10 administrations), were investigated in rabbits with respect to cardiac function and the release of cardiac troponin T (cTnT). Different doses of dimethoxybenfluron were administered to two groups of animals (12 mg/kg; n = 7 and 24 mg/kg; n = 6) and compared with either a control group (saline 1 ml/kg; n = 6) or a group with experimentally induced cardiomyopathy (daunorubicin 50 mg/m2; n = 13). In daunorubicin-induced cardiomyopathy, cTnT levels in animals with premature deaths were significantly higher (0.31±0.11 mg/l) in comparison with the surviving animals (0.04±0.03 mg/l). However, cardiac TnT levels after the administration of dimethoxybenfluron in both doses were within the physiological range (lower than 0.1 mg/l) during the whole experiment as it was in the control group. The lack of cardiotoxicity of this new antineoplastic drug was supported by the absence of alterations in PEP:LVET ratio, left ventricle dP/dtmax or histological heart examination as well as by the fact that no premature death of animals occurred following repeated administration of dimethoxybenfluron. It is possible to conclude that no signs of cardiotoxicity were observed following repeated i.v. administration of dimethoxybenfluron., J. Macháčková, M. Adamcová, Y. Mazurová, R. Hrdina, M. Nobilis., and Obsahuje bibliografii
Industrial chicory, Cichorium intybus L., has rather poor early vigour under the typical early spring morning conditions of low temperatures and high light intensity. Screening tools are being developed to assess the cold tolerance/sensitivity of young industrial chicory plants under these conditions. Refinement of such tools requires better understanding of the plants' physiological responses. In this paper we discuss the effects of growth temperature (GT), measurement temperature (MT), and measuring light intensity (ML) on the relaxation of the Kautsky curve. We chose the chicory variety 'Hera', as it is known to possess a good average early vigour. Young plants of the variety 'Hera' were grown at three temperatures (GT): 16°C (reference), 8°C (intermediate), and 4°C (cold stress). The dark relaxation kinetics were analyzed at different light intensities (ML) in combination with different measurement temperatures (MT). The three components of the nonphotochemical quenching process (NPQE, NPQT, and NPQI) were determined. NPQE was not affected by GT but was significantly affected by MT and ML. NPQT and NPQI were affected by all factors and their interactions. An acclimation effect for plants grown at low GT was detected. Acclimation resulted in lower NPQT and NPQI values. The halftime of the inhibition depending on NPQ (NPQI) was not affected by any of the factors investigated. Based on the data generated, we conclude that NPQI is a valuable parameter for screening the cold sensitivity of young industrial chicory plants. and P. Lootens ... [et al.].
Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar 'Hera' to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated. and S. Devacht ... [et al.].
Data envelopment analysis (DEA) is a methodology for measuring best relative efficiencies of a group of peer decision-making units (DMUs) that take multiple inputs to produce multiple outputs. However, the traditional DEA model only aims to maximize the efficiency of the DMU under evaluation. This usually leads to very small weights (even zero weights) being assigned to some inputs or outputs. Correspondingly, these inputs or outputs have little or even no contribution to efficiency, which is unfair and irrational. The purpose of this paper is to address this problem. Two new weight-optimized models are proposed based upon the perspective of cross evaluation. Using the results of an Advanced Manufacturing Technology (AMT) example, it is found that all AMTs are fully sorted. The decision maker can easily choose the best AMT. In addition, unreasonable weights of AMTs are effectively avoided.
The paper presents an analysis of the possibilities of using a data set of Sentinel-1 (S-1) Interferometric Synthetic Aperture Radar (InSAR) for urban monitoring. The study was conducted in the Olsztyn area, where by using the PSI (Persistent Scatterer InSAR) method the amount of deformation was determined, calculated using a multi-time SAR data series. Displacement values were estimated by reducing error sources related to temporal and geometrical decorrelation and atmospheric phase delay. Based on the defined assumptions, three calculation cases were prepared. This processing is based on the data from more than 648 Sentinel-1A/B images over ascending and descending orbits acquired between October 2014 and August 2018 to determine the value of the Line of Sight (LOS) ground deformation rates. Regular acquisition of SAR images from the Sentinel-1 satellite sensor in an interval of 2 days enabled the detection of more than 1000 PSI points per 1 km2 in the 10 × 10 km2 urban area. The mean LOS velocity of surface change was determined on the basis of four large data sets. and Comparable values were obtained from ascending tracks 29, 102 and descending tracks 51, 124 where mean velocity ranges respectively: A29 from -4.3 to 3.4 mm/yr, A102 from -3.9 to 3.5 mm/yr and D51 from -3.9 to 3.1 mm/yr, D124 from -3.8 to 3.2 mm/yr. Then the results of geometries were combined in pairs to compute the actual vertical motion component. In the presented work, an analysis of the terrain deformation was performed for selected characteristic objects located within the Olsztyn area. In the first case study, a detailed analysis of urban infrastructure facilities was carried out, including buildings and a section of the railway line. The other case study covers an area along the river bank. A large number of observations allowed to accurately determine the deformation model and to produce the history of deformations on the tested area, based on the analysis of time series of interferograms. The paper presents solutions using InSAR data in urban monitoring and shows why this technology is a useful tool for studying measuring urban subsidence. The results are displayed in the form of a deformation map showing the magnitude of the measured movement.
There is a growing interest of research being conducted on detecting eye blink to assist physically impaired people for verbal communication and controlling devices using electroencephalogram (EEG) signal. One particular eye blink can be determined from use of peak points. Therefore, the purpose of peak detection algorithm is to distinguish an actual peak location from a list of peak candidates. The need of a good peak model is important in ensuring a satisfy classification performance. In general, there are various peak models available in literature, which have been tested in several peak detection algorithms. In this study, performance evaluation of the existing peak models is conducted based on Artificial Neural Network (ANN) with particle swarm optimization (PSO) as learning algorithm. This study evaluates the performance of eye blink EEG signal peak detection algorithm for four different peak models which are Dumpala's, Acir's, Liu's, and Dingle's peak models. To generalize the performance evaluation, two case studies of eye blink EEG signal are considered, which are single and double eye blink signals. It has been observed that the best test performance, in average, is 91.94% and 87.47% for single and double eye blink signals, respectively. These results indicate that the Acir's peak model offers high accuracy of peak detection for the two eye blink EEG signals as compared to other peak models. The result of statistical analysis also indicates that the Acir's peak model is better than Dingle's and Dumpala's peak models.
The aim of this study was to analyze the ECG time intervals in the course of the development of chronic anthracycline cardiomyopathy in rabbits. Furthermore, this approach was employed to study the effects of a model cardioprotective drug (dexrazoxane) and two novel iron chelating compounds - salicylaldehyde isonicotinoyl hydrazone (SIH) and pyridoxal 2-chlorobenzoyl hydrazone (o-108). Repeated daunorubicin administration induced a significant and progressive prolongation of the QRS complex commencing with the 8th week of administration. At the end of the study, we identified a significant correlation between QRS duration and the contractility index dP/dtmax (r=-0.81; P<0.001) as well as with the plasma concentrations of cardiac troponin T (r=0.78; P<0.001). In contrast, no alterations in ECG time intervals were revealed in the groups co-treated with either dexrazoxane or both novel cardioprotective drugs (SIH, o-108). Hence, in this study, the QRS duration is for the first time shown as a parameter suitable for the non-invasive evaluation of the anthracycline cardiotoxicity and cardioprotective effects of both well established and investigated drugs. Moreover, our results strongly suggest that novel iron chelators (SIH and o-108) merit further study as promising cardioprotective drugs against anthracycline cardiotoxicity., A. Potáčová, M. Adamcová, H. Čajnáková, L. Hrbatová, M. Štěrba, O. Popelová, T. Šimůnek, P. Poňka, V. Geršl., and Obsahuje bibliografii a bibliografické odkazy
Endothelium-protective properties of pharmacological agents may be assessed by using different experimental models of endothelial dysfunction or injury. The model of endothelial dysfunction induced by vessel perfusion with polymorphonuclear leukocytes (PMN) was used for evaluation of pentoxifylline (PTX) effects on vasoconstrictor responses to noradrenaline (NA) in the rabbit renal artery. Addition of PMN into the perfusion solution significantly increased the responses to NA at all doses. PTX administration (10-5 mol.l1) significantly diminished the constrictor responses to NA in vessels perfused with PMN+PTX when compared to the responses in PMN-perfused vessels (at dose 0.1 m g: 32.25 vs. 14.25, at dose 1 m g: 51 vs. 27.75 (p<0.01), at dose 10 m g 74.25 vs. 39.75 (p<0.05), all values expressed as median of perfusion pressure in mm Hg). The model of endothelial damage induced by repeated NA administration in 5 doses (10-50 m g of NA) was used for evaluation of the endothelium-protective effect of sulodexide (SLX). It was found that SLX (120 U/l) significantly decreased the number of desquamated endothelial cells (EC) compared to the control group (controls: 131.4± 20.1 EC, +SLX: 83.3± 13.8 EC, p<0.01). These results confirmed the favorable endothelium-protective effects of pentoxifylline and sulodexide in the two experimental models., V. Kristová, M. Kriška, P. Babál, M. N. Djibril, J. Slámová, A. Kurtanský., and Obsahuje bibliografii
Formulas for full seismic moment tensor composition are present, i.e. moment tensor is express as a function of ISO, CLVD, DC, strike, dip, rake, where ISO is amount of isotropic part, CLVD is amount of compensated liner-vector dipole and DC is amount of pure double couple. Two forms of final formulas are given: i, two matrixes multiplication, ii, extension of "classical" formulas for 6 independent moment tensor elements., Petr Kolář., and Obsahuje bibliografické odkazy