The effect of ultraviolet B radiation (UV-B) on cellular ultrastructure, chlorophyll (Chl), carotenoids, and total phenolics of Acrostichum danaeifolium gametophytes was analyzed. The control group of spores was germinated under standard conditions, while the test group of spores was germinated with additional UV-B for 30 min every day for 34 d. The cell characteristics were preserved in gametophytes irradiated with UV-B, but the number of starch grains increased in the chloroplasts and the more developed grana organization in contrast to the chloroplasts of the control group. Chl a content decreased, while Chl b content increased in the gametophytes cultivated with UV-B for 34 d. Contents of lutein and zeaxanthin decreased and trans-β-carotene concentration was enhanced in the gametophytes irradiated with UV-B. The content of total phenolic compounds increased in the gametophytes cultivated with UV-B. Therefore our data suggest that the gametophytes of A. danaeifolium, a fern endemic to the mangrove biome, were sensitive to enhancement of UV-B radiation at the beginning of their development and they exhibited alterations in their ultrastructure, pigment contents, and protective mechanisms of the photosynthetic apparatus, when exposed to this radiation., A. M. Randi, M. C. A. Freitas, A. C. Rodrigues, M. Maraschin, M. A. Torres., and Obsahuje bibliografii
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark., N. Maximová, Ľ. Slováková., and Obsahuje bibliografii
Prosopis juliflora is an invasive leguminous tree species growing profusely under wide environmental conditions. Primary objective of this study was to investigate adaptation strategies evolved to deal with wide environmental conditions during different seasons. P. juliflora adapts through a production of leaves in two seasons, namely, the spring (the first cohort) and monsoon (the second cohort) with differing but optimal physiological characteristics for growth in respective seasons. Our studies show that the first cohort of leaves exhibit maximum carbon fixation under moderate temperatures and a wide range of PPFD. However, these leaves are sensitive to high leaf-to-air-vapor pressure deficit (VPD) occurring at high temperatures in summer resulting in senescence. While the second cohort of leaves produced during monsoon showed maximum carbon fixation at high irradiance and temperatures with low VPD, it is sensitive to low temperatures causing senescence in winter., P. A. Shirke, U. V. Pathre, P. V. Sane., and Obsahuje bibliografické odkazy
Cuttings of Populus cathayana Rehd, originating from three triploid and one diploid populations with the same parents but different gamete origins, were used to examine physiological responses to drought stress and rewatering by exposure to three progressive water regimes. Progressive drought stress significantly decreased the leaf relative water content (RWC), photosynthesis, and chlorophyll fluorescence parameters, and increased the relative electrolyte leakage, malondialdehyde (MDA), free proline (Pro), and antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, in the four populations evaluated. However, compared to the diploid population, triploid populations showed lower relative electrolyte leakage and MDA, higher RWC and Pro content, and more efficient photosynthesis and antioxidant systems under the same water regime. Our data indicated that triploid populations possessed more efficient protective mechanisms than that of diploid population with gradually increasing drought stress. Moreover, some triploid genotypes were less tolerant to water stress than that of diploids due to large intrapopulation overlap., T. Liao, Y. Wang, C. P. Xu, Y. Li, X. Y. Kang., and Obsahuje bibliografii
Alkali stress is an important agricultural problem that affects plant metabolism, specifically root physiology. In this study, using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of rice plants to alkali stress. Compared to the alkali-sensitive cultivar (SC), the alkali-tolerant cultivar (TC) maintained higher photosynthesis and root system activity under alkali stress. Correspondingly, the Na+ content in its shoots was much lower, and the contents of mineral ions (e.g., K+, NO3-, and H2PO4-) in its roots was higher than those of the SC. These data showed that the metabolic regulation of roots might play a central role in rice alkali tolerance. Gene expression differences between the cultivars were much greater in roots than in shoots. In roots, 46.5% (20 of 43) of selected genes indicated over fivefold expression differences between cultivars under alkali stress. The TC had higher root system activity that might protect shoots from Na+ injury and maintain normal metabolic processes. During adaptation of TC to alkali stress, OsSOS1 (salt overly sensitive protein 1) may mediate Na+ exclusion from shoots or roots. Under alkali stress, SC could accumulate Na+ up to toxic concentrations due to relatively low expression of OsSOS1 in shoots. It possibly harmed chloroplasts and influenced photorespiration processes, thus reducing NH4+ production from photorespiration. Under alkali stress, TC was able to maintain normal nitrogen metabolism, which might be important for resisting alkali stress., H. Wang, X. Lin, S. Cao, Z. Wu., and Obsahuje bibliografii
Ground concentration of ozone (O3) causes serious threat to plants. In order to protect sensitive plants from O3 pollution, many kinds of antioxidants were assessed in previous studies. In this study, effects of O3 fumigation (a single spike of 120 ± 20 nmol mol-1 for four hours) on an ornamental species (Coleus blumei) was examined in open-top chambers. Before the O3 treatment, plants were sprayed respectively either with a solution of three different antioxidants [Na-ascorbate (NaAsA), kinetin (KIN), and spermidine (Spd)] or with distilled water to compare their protective effects to plants. Our results revealed that O3 fumigation impaired the plasma membrane, decreased chlorophyll (Chl) content, inhibited photosynthesis, induced photoinhibition and photodamage, and caused visible injury. Spraying with KIN, NaAsA or Spd ameliorated the decrease of the Chl content and photosynthetic capability, the impairment of membrane, and visible injury under O3 fumigation. The plants treated with KIN showed the best ability to mitigate the injury caused by O3., L. Zhang, L. L. Jia, J. X. Sui, M. X. Wen, Y. J. Chen., and Obsahuje bibliografii
Salicylic acid (SA) and polyamines (PA) are widely used to overcome various abiotic stresses including salt (NaCl) stress in plants. In the present investigation, co-application efficacies of SA and PA on the salt stress (200 mM NaCl) were evaluated in Lycopersicon esculentum. After transplantation, at 10-d stage, seedlings were exposed to NaCl through soil and then allowed to grow till 30-d stage. At 31-d stage of growth, plants were sprayed with double distilled water (control) or spermidine (1.0 mM) and/or SA (10-5 M). The salt stress significantly reduced the growth, gas-exchange parameters, but increased antioxidant enzymes and proline content in the leaves. Moreover, the loss caused by salt stress was successfully restored by the following treatment of spermidine and SA., Q. Fariduddin, T. A. Khan, M. Yusuf, S. T. Aafaqee, R. R. A. E. Khalil., and Obsahuje bibliografii
The photosynthetic gas-exchange has been assessed traditionally either as O2 evolution or CO2 consumption. In this study, we used a liquid-phase O2 electrode combined with CO2 optodes to examine simultaneously photosynthesis in intact leaves of mangrove Rhizophora mucronata. We verified suitable conditions for leaf photosynthetic rates by assessing pH levels and NaHCO3 concentrations and compared these to the gas-exchange method at various PAR levels. The photosynthetic rate in response to pH exhibited a similar pattern both for O2 evolution and CO2 consumption, and higher rates were associated with intermediate pH compared with low and high pH values. The net photosynthetic quotient (PQ) of R. mucronata leaves ranged from 1.04-1.28. The PQ values, which were never lesser than 1, suggested that photorespiration did not occur in R. mucronata leaves under aqueous conditions. The similar maximum photosynthetic rates suggested that all measurements had a high capacity to adjust the photosynthetic apparatus under a light saturation condition. The simultaneous measurements of O2 evolution and CO2 consumption using the Clark oxygen electrode polarographic sensor with the CO2 optode sensor provided a simple, stable, and precise measurement of PQ under aqueous and saturated light conditions., T. Z. Ulqodry, A. Nose, S.-H. Zheng., and Obsahuje seznam literatury
Redox polymer/protein biophotoelectrochemistry was used to analyse forward electron transfer of isolated PSII complexes with natural PsbA-variants. PsbA1- or PsbA3-PSII was embedded in a redox hydrogel that allows diffusion-free electron transfer to the electrode surface and thus measurement of an immediate photocurrent response. The initial photocurrent density of the electrode is up to ~2-fold higher with PsbA1-PSII under all tested light conditions, the most prominent under high-light [2,300 μmol(photon) m-2 s-1] illumination with 5 μA cm-2 for PsbA3-PSII and 9.5 μA cm-2 for PsbA1-PSII. This indicates more efficient electron transfer in low-light-adapted PsbA1-PSII. In contrast, the photocurrent decays faster in PsbA1-PSII under all tested light conditions, which suggests increased stability of high-light-adapted PsbA3-PSII. These results confirm and extend previous observations that PsbA3-PSII has increased P680+/QA- charge recombination and thus less efficient photon-to-charge conversion, whereas PsbA1-PSII is optimised for efficient electron transfer with limited stability., V. Hartmann, A. Ruff, W. Schuhmann, M. Rögner, M. M. Nowaczyk., and Obsahuje bibliografické odkazy