Brassinosteroids (BRs), an important class of plant steroidal hormones, play a significant role in the amelioration of various biotic and abiotic stresses. 24-epibrassinolide (EBR), an active brassinosteroid, was applied exogenously in different concentrations to characterize a role of BRs in tolerance of melon (Cucumis melo L.) to high temperature (HT) stress and to investigate photosynthetic performance of HT-stressed, Honglvzaocui (HT-tolerant) and Baiyuxiang (HTsensitive), melon variety. Under HT, Honglvzaocui showed higher biomass accumulation and a lower index of heat injury compared with the Baiyuxiang. The exogenous application of 1.0 mg L-1 EBR, the most effective concentration, alleviated dramatically the growth suppression caused by HT in both ecotypes. Similarly, EBR pretreatment of HTstressed plants attenuated the decrease in relative chlorophyll content, net photosynthetic rate, stomatal conductance, stomatal limitation, and water-use efficiency (WUE), as well as the maximal quantum yield of PSII photochemistry (Fv/Fm), the efficiency of excitation capture of open PSII center, the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching coefficient, and the photon activity distribution coefficients of PSI (α). EBR pretreatment further inhibited the increase in intracellular CO2 concentration, leaf transpiration rate, minimal fluorescence of dark-adapted state, nonphotochemical quenching, thermal dissipation, and photon activity distribution coefficients of PSII. Results obtained here demonstrated that EBR could alleviate the detrimental effects of HT on the plant growth by improving photosynthesis in leaves, mainly reflected as up-regulation of photosynthetic pigment contents and photochemical activity associated with PSI. and Y. P. Zhang ... [et al.].
In the past decade, utilization of nanostructured materials has increased intensively in a wide range of applications. Titanium dioxide nanoparticles (TiO2 NPs), for instance, can be applied for the inactivation of various pathogens through photo-induced generation of reactive oxygen species. Although TiO2 NPs with high antimicrobial activity are of great importance, in practice, their phytotoxic effects have not yet been fully clarified. In this study, we investigated the potential phytotoxicity of TiO2 NPs on grapevine (Vitis vinifera L.) under field conditions. After foliar exposure, two particularly stress-sensitive parameters, photosynthetic function and the flavonol profile, were examined. Micro- and macroelement composition of the leaves was also studied by ICP-AES measurements. We found that TiO2 NPs significantly decreased the net CO2 assimilation and increased stomatal conductance, indicating metabolic (nonstomatal) inhibition of the photosynthesis. The lower electron transport rate and lower nonphotochemical quenching in treated leaves are indicative of diminished photoprotective processes., P. Teszlák, M. Kocsis, A. Scarpellini, G. Jakab, L. Kőrösi., and Obsahuje bibliografii
Despite the elimination of the original forest and frequent cultivation using slash and burn, a large spread in leaf δ13C was recorded in weeds, crops, and bush fallow species, reflecting a forest environment rather than a broken canopy or open environment., A. De Rouw, J .F. Maxwell, C. Girardin., and Obsahuje bibliografii
Dnešní terestrické ekosystémy jsou do značné míry produktem koevoluce rostlin a hmyzu, který představuje vůbec nejpočetnější a nejrozmanitější skupinu živočichů. Počátky tohoto vzájemného působení lze vysledovat stovky milionů let do minulosti, přičemž postupně docházelo k nárůstu jeho komplexity. Nejčastějšími doklady těchto složitých vztahů jsou fosilizované listy nebo jejich otisky, vykazující často specifické i nespecifické poškození, jako jsou miny nebo hálky, stopy po ovipozici, popřípadě nejrůznější typy okusů. Kvalitativní a kvantitativní analýza těchto stop má velký význam při studiu evolučních procesů v rámci výše uvedených skupin organismů. Detekované změny v dynamice trofických vztahů mezi hmyzem a jeho rostlinnými hostiteli pomáhají zpřesnit představu o vlivu měnícího se prostředí na okolní biotu, jakož i poskytují vodítko pro stanovování průběhu klimatických změn v čase., Contemporary terrestrial ecosystems are largely a product of the coevolution of plants and insects, which are the most prevalent and diverse group of animals. The origin of these interactions can be traced hundreds of millions of years back followed by a gradual increase in their complexity. The most common evidence of these complex relationships is represented by the fossilized leaves, often having specific and non-specific damage such as the mines, galls, traces of oviposition, or various types of feeding. Qualitative and quantitative analyses of these ichnofossils are of great importance with regard to the study of the evolutionary processes occurring among these groups of organisms. The detected changes in the dynamics of trophic relationships between insects and their host plants help to clarify ideas regarding the impact on the developing environment and organisms, and provide evidence for the recognition of trends in climate changes in the past., and Stanislav Knor, Jakub Prokop.
IsiA is a membrane-bound Chl a-antenna protein synthesized in cyanobacteria under iron deficiency. Since iron deficiency is a common nutrient stress in significant fractions of cyanobacterial habitats, IsiA is likely to be essential for some cyanobacteria. However, the role it plays in cyanobacteria is not fully understood. In this review paper, we summarize the research efforts directed towards characterizing IsiA over the past three decades and attempt to bring all the pieces of the puzzle together to get a more comprehensive understanding of the function of this protein. Moreover, we analyzed the genomes of over 390 cyanobacterial strains available in the JGI/IMG database to assess the distribution of IsiA across the cyanobacterial kingdom. Our study revealed that only 125 such strains have an IsiA homolog, suggesting that the presence of this protein is a niche specific requirement, and cyanobacterial strains that lack IsiA might have developed other mechanisms to survive iron deficiency., H.-Y. S. Chen, A. Bandyopadhyay, H. B. Pakrasi., and Obsahuje bibliografické odkazy
Fusilade (fluazifop-p-butyl) is one of the herbicides that inhibit acetyl-CoA carboxylase. The exogenous effect of 30, 60, and 90 ppm fusilade on peanut (Arachis hypogaea L. cv. Giza 5) leaves was studied. With increasing fusilade concentration, the peanut leaf chlorosis appeared after 7-10 d. Declined leaf pigment contents confirmed the leaf chlorosis. Electron microscopic observation of the fusilade-treated (FT) leaves revealed disorganization in the ultrastructure of mesophyll cell chloroplasts. An increase of plastoglobuli occurrence within chloroplasts and degenerated grana thylakoids were observed in FT leaves. Fusilade treatments induced mainly the enhancement of malondialdehyde content and the activities of peroxidases (guaiacol and ascorbate). On contrary, a decrease in H2O2 content, catalase and superoxide dismutase activities was recorded. Enhancements of the guaiacol and ascorbate peroxidase activities were associated with the decreasing H2O2 content in the FT leaves. Hydrogen peroxide seems not to be involved in the oxidative stress of FT leaves. In the FT leaves, the oxidative stress confirmed by chlorophyll degradation and lipid peroxidation might be caused by the other reactive oxygen species probably due to the decrease of superoxide dismutase activity., K. A. Fayez, D. E. M. Radwan, A. K. Mohamed, A. M. Abdelrahman., and Obsahuje bibliografii
The response of some photosynthetic parameters (CO2 assimilation, transpiration rate, stomatal conductance, intercellular CO2 concentration, water-use efficiency, and chlorophyll content), shoot development, and the morphological features of the root system to differentiated conditions of nitrogen supply was tested in festulolium (Festulolium braunii K. Richert A. Camus) varieties (Felopa and Sulino). Nitrogen fertilization with no nitrogen added
[0 g(N)], single dosage [0.23 g(N)], and double dosage [0.46 g(N)] per pot and per year was applied. Lack of nitrogen resulted in formation of longer and finer roots and lowered chlorophyll content, CO₂ assimilation, and water-use efficiency, resulting in lower dry matter accumulation. Application of both dosages of nitrogen resulted in improved aboveground features, while root features were enhanced without nitrogen fertilization. Dependence between physiological parameters and morphological traits was significant and positively correlated in the case of the aboveground parts of plants and negatively correlated to the belowground parts., G. Mastalerczuk, B. Borawska-Jarmułowicz, H. M. Kalaji, P. Dąbrowski, J. Paderewski., and Obsahuje bibliografii
We studied water relations and gas exchange in six almond genotypes grafted on GF677 in response to withholding irrigation for 14 days and a subsequent 10-day rehydration period. The responses to drought stress significantly differed in the almond genotypes; the tolerant plants were distinguished and monitored. Leaf relative water content (RWC) decreased by more than 23%, leaf water potential dropped to less than -4.3 MPa, and electrolyte leakage increased to 43% in dehydration-sensitive genotypes. Photosynthesis (PN) and stomatal conductance (gs) of drought-sensitive genotypes were significantly reduced by 70% and 97% in response to water deficiency. Water stress significantly enhanced wateruse efficiency up to 10 folds in drought-tolerant almonds. The difference between leaf temperature and its surrounding air temperature (ΔT) increased significantly to more than 187% under water stress in drought-tolerant genotypes. In addition, the reduction in the g s and further ability to preserve RWC were involved probably in drought-tolerance mechanism in almond. Negative significant correlations were found between ΔT, PN, and gs. Based on the correlations, we suggested that ΔT could be used as a simple measurement for monitoring water stress development in the irrigation management of almond orchards. In conclusion, ‘Supernova’ and the Iranian genotypes ‘6-8’ and ‘B-124’, were found to be more droughttolerant compared with other genotypes in this experiment., S. Karimi, A. Yadollahi, K. Arzani, A. Imani, M. Aghaalikhani., and Obsahuje bibliografii