NG-nitro-L-arginine methyl ester (L-NAME) is a non-specific nitric oxide (NO) synthase inhibitor, commonly used for the induction of NO-deficient hypertension. The aim of this study was to investigate the effect of chronic low-dose administration of L-NAME on NO production, vascular function and structure of the heart and selected arteries of rats. Adult male Wistar rats were treated with L-NAME in the dose of approximately 1.5 mg/kg/day in drinking water for 8 weeks. Basal blood pressure (BP) of rats (determined by tail-cuff) was 112±3 mm Hg. The low-dose administration of L-NAME significantly elevated BP measured on the third and sixth week of treatment vs. controls by approximately 9 % and 12 %, respectively. After this period, BP of L-NAME-treated rats returned to the control values. The relative left ventricular mass, heart fibrosis and collagen III/collagen I ratio were not affected by L-NAME. Similarly, there were no alterations in the cross-sectional area and wall thickness/diameter ratio of the aorta and the femoral artery of LNAME- treated rats. NO synthase activity (determined by conversion of [3H]-L-arginine to [3H]-L-citrulline) was not altered in the hypothalamus of L-NAME-treated rats. Interestingly, chronic low-dose L-NAME treatment significantly elevated NO synthase activity in the left ventricle and aorta, increased endothelium-dependent acetylcholine-induced vasorelaxation and reduced serotonin-induced vasoconstriction of the femoral artery. The data suggest that chronic lowdose L-NAME treatment can increase NO production and vasorelaxation in normotensive rats without negative structural changes in the cardiovascular system., I. Bernátová, J. Kopincová, A. Púzserová, P. Janega, P. Babál., and Obsahuje bibliografii
There exists no examination of what is the minimum anti - hypertensive threshold intensity for isometric exercise training. Twenty two normotensive participants were randomly assigned to training intensities at either 5 % or 10 % of their maximal contraction. Twenty participants completed the study. Clinical meaningful, but not statistically significant, reductions in systolic blood pressure were observed in both 5 % and 10 % groups -4.04 mm Hg (95 % CI -8.67 to +0.59, p=0.08) and -5.62 mm Hg (95 % CI -11.5 to +0.29, p=0.06) respectively after 6 weeks training. No diastolic blood pressure reductions were observed in either 5 % -0.97 mm Hg (95 % CI -2.56 to +0.62, p=0.20) or 10 % MVC +1.8 mm Hg (95 % CI -1.29 to +4.89, p=0.22) groups respectively after training. In those unable to complete isometr ic exercise at the traditional 30 % intensity, our results suggest there is no difference between 5 and 10 % groups and based on the principle of regression to the mean, this could mean both interventions induce a similar placebo-effect., N. C. L. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. McFarlane, N. A. Smart., and Obsahuje bibliografii
The aim of the present study was to test the hypothesis that chronic hypoxia would aggrav ate hypertension in Ren-2 transgenic rats (TGR), a well-defined monogenetic model of hypertension with increased ac tivity of endogenous renin- angiotensin system (RAS). Systolic blood pressure (SBP) in conscious rats and mean arterial pressure (MAP) in anesthetized TGR and normotensive Hannover Sprague-Dawley (HanSD) rats were determined under normoxia that was either continuous or interrupted by two weeks' hypoxi a. Expression, activities and concentrations of individual components of RAS were studied in plasma and kidney of TGR and HanSD rats under normoxic conditions and after exposure to chronic hypoxia. In HanSD rats two weeks' exposure to chroni c hypoxia did not alter SBP and MAP. Surprisingly, in TGR it de creased markedly SBP and MAP; this was associated with substantial reduction in plasma and kidney renin activities and also of angiotensin II (ANG II) levels, without altering angiotensin-converting enzyme (ACE) activities. Simultaneously, in TGR the exposu re to hypoxia increased kidney ACE type 2 (ACE2) activity and angiotensin 1-7 (ANG 1-7) concentrations as compared with TGR under continuous normoxia. Based on these results, we propose that suppression of the hypertensiogenic ACE-ANG II axis in the circulation and kidney tissue, combined with augmentation of the intrarenal vasodilator ACE2-ANG 1-7 axis, is the main mechanism responsible for the blood pressure-lowering effects of chronic hypoxia in TGR., L. Červenka, J. Bíbová, Z. Husková, Z. Vańourková, H. J. Kramer, J. Herget, Š. Jíchová, J. Sadowski, V. Hampl., and Obsahuje bibliografii
a1_Non-invasive methods of determination of baroreflex sensitivity (BRS, ms/mmHg) are based on beat-to-beat systolic blood pressure and inter-beat interval recording. Sequential methods and spectral methods at spontaneous breathing include transient superposition of breathing and 0.1 Hz rhythms. Previously, a cross-spectral method of analysis was used, at constant breathing rate using a metronome set at 0.33 Hz, enabling separate determination of BRS at 0.1 Hz (BRS0.1Hz) and respiratory rhythms (BRS0.33Hz). The aim of the present study was to evaluate the role of breathing in the spectral method of BRS determination with respect to age and hypertension. Such information would be important in evaluation of BRS at pathological conditions associated with extremely low BRS levels. Blood pressure was recorded by Finapres (5 minutes, controlled breathing at 0.33 Hz) in 118 healthy young subjects (YS: mean age 21.0±1.3 years), 26 hypertensive patients (HT: mean age 48.6±10.3 years) with 26 age-matched controls (CHT: mean age 46.3±8.6 years). A comparison of BRS0.1Hz and BRS0.33Hz was made. Statistically significant correlations were found between BRS0.1Hz and BRS0.33Hz in all groups: YS: r=0.52, p<0.01, HT: r=0.47, p<0.05, and CHT: r=0.70, p<0.01. The regression equations indicated the existence of a breathing-dependent component unrelated to BRS (YS: BRS0.33Hz=2.63+1.14*BRS0.1Hz; HT: BRS0.33Hz=3.19+0.91*BRS0.1Hz; and CHT: BRS0.33Hz=1.88+ +1.01*BRS0.1Hz; differences between the slopes and the slope of identity line were insignificant). The ratios of BRS0.1Hz to BRS0.33Hz were significantly lower than 1 (p<0.01) in all groups (YS: 0.876±0.419, HT: 0.628±0.278, and CHT: 0.782±0.260). Thus, BRS evaluated at the breathing rate overestimates the real baroreflex sensitivity. This is more pronounced at low values of BRS, which is more important in patients with pathologic low BRS., a2_For diagnostic purposes we recommend the evaluation of BRS at the frequency of 0.1 Hz using metronome-controlled breathing at a frequency that is substantially higher than 0.1 Hz and is not a multiple of 0.1 Hz to eliminate respiratory baroreflexnon- related influence and resonance effect on heart rate fluctuations., P. Bothová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We assessed the effect of the previously uncovered gap junctio n protein alpha 8 (Gja8) mutation present in spontaneously hypertensive rat - dominant cataract (SHR - Dca ) strain on blood pressure, metabolic profile, and heart and renal transcriptomes. Adult, standard chow-fed male rats of SHR and SHR - Dca strains were used. We found a significant, consistent 10-15 mmHg decrease in both systolic and diastolic blood pressures in SHR - Dca compared with SHR (P<0.01 and P<0.05 , respectively; repeated measures analysis of variance (ANOVA)). With immunohistochemistry, we were able to localize Gja8 in heart, kidney, aorta, liver, and lungs, mostly in endothelium; with no differences in expression between strains. SHR - Dca rats showed decreased body weight, high-density lipoprotein cholesterol concentrations and basa l insulin sensitivity in muscle. There were 21 transc ripts common to the sets of 303 transcripts in kidney and 487 in heart showing >1.2-fold difference in expression between SHR and SHR - Dca. Tumor necrosis factor was the most significant upstream regulato r and glial cell-derived neurotrophic factor family ligand-receptor interactions was the common enriched and downregulated canonical pathway both in heart and kidney of SHR - Dca. The connexin 50 mutation L7Q lowers blood pressure in the SHR - Dca strain, decr eases high-density lipoprotein cholesterol, and leads to substantial transcriptome changes in heart and kidney., O. Šeda, F. Liška, M. Pravenec, Z. Vernerová, L. Kazdová, D. Křenová, V. Zídek, L. Šedová, M. Krupková, V. Křen., and Obsahuje bibliografii
We aimed to compare the effect of angiotensin converting enzyme (ACE) inhibitors captopril (containing thiol group) and enalapril (without thiol group) on the development of spontaneous hypertension and to analyze mechanisms of their actions, particularly effects on oxidative stress and NO production. Six-week-old SHR were divided into three groups: control, group receiving captopril (50 mg/kg/day) or enalapril (50 mg/kg/day) for 6 weeks. At the end of experiment, systolic blood pressure (SBP) increased by 41 % in controls. Both captopril and enalapril prevented blood pressure increase, however, SBP in the captopril group (121±5 mmHg) was significantly lower than that in the enalapril group (140±5 mmHg). Concentration of conjugated dienes in the aorta was significantly lower in the captopril group compared to the enalapril group. Captopril and enalapril increased NO synthase activity in the heart and aorta to the similar level. Neither captopril nor enalapril was, however, able to increase the expression of eNOS. Both ACE inhibitors increased the level of cGMP. However, cGMP level was significantly higher in the aorta of captopril group. We conclude that captopril, beside inhibition of ACE, prevented hypertension by increasing NO synthase activity and by simultaneous decrease of oxidative stress which resulted in increase of cGMP concentration., O. Pecháňová., and Obsahuje bibliografii
Within the framework of our studies on hypertension in various rat strains, we have examined the effect of cyclosporin A (CsA) on intracellular calcium signaling under conditions of oxidative stress. For these preliminary experiments, we have chosen isolated hepatocytes of normotensive rats as a model system for the study of the role of intracellular calcium. We used tert-butyl hydroperoxide (t-BHP, 1 mmol.l-1) as an prooxidant agent. When compared to the controls, we found increased levels of cytosolic free calcium concentration (Ca2+i) during 120 min incubation. The preincubation of hepatocytes with CsA in the concentration of 0.5 m mol.l-1 did not change the physiological level of cytosolic calcium. However, a dual action of CsA on elevated Ca2+i was observed during oxidative injury of hepatocytes: while in the first period of incubation CsA increased Ca2+i, CsA reduced the effect of t-BHP on Ca2+i during the next period of incubation. This indicates the ability of CsA to modify oxidative stress, but further studies are necessary to explain these findings., E. Kmoníčková, L. Kameníková, S. Hynie, H. Farghali., and Obsahuje bibliografii
The relationship between angiotensin II (ANG II) and endothelin-1 (ET-1) is known to be complex; both peptides can initiate and potentiate the gene expression of each other. This pilot study investigated the effects of the AT1 receptor blocker losartan or the direct renin inhibitor aliskiren on mean arterial pressure (MAP) and albuminuria and the renal ANG II and ET-1 levels. 3-month-old male Ren-2 transgenic rats (TGR) were treated either with losartan (5 mg kg-1 day-1) or aliskiren (10 mg kg-1 day-1) for 10 weeks. At the end of the experiment, rats were decapitated and cortical and papillary parts of kidneys were separated. Plasma and tissue ANG II levels were measured by RIA and tissue ET-1 concentrations by ELISA. In all four groups of animals ET-1 levels were lowest in renal cortex and more than 100-fold higher in the papilla. Cortical and papillary ET-1 concentrations in untreated TGR significantly exceeded those of control HanSD rats and were significantly depressed by both drugs. In both strains, papillary ANG II concentrations were moderately but significantly higher than cortical ANG II, TGR exhibited higher ANG II levels both in cortex and papilla as compared to control HanSD rats. Aliskiren and losartan at the doses used depressed similarly the levels of ANG II in cortex and papilla and reduced ET-1 significantly in the renal cortex and papilla below control levels in HanSD rats. Albuminuria, which was more than twice as high in TGR as in HanSD rats, was normalized with aliskiren and reduced by 28 % with losartan, although MAP was reduced to a similar degree by both drugs. Despite similar reductions of MAP and renal ET-1 and ANG II levels aliskiren appears to be more effective than losartan, at the doses used, in reducing albuminuria in heterozygous hypertensive Ren-2 rats., Z. Vaňourková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Tissue renin-angiotensin systems are known to behave differently from the circulating renin-angiotensin system (RAS). It has already been proposed that not only the circulating RAS, but also RAS localized in the cardiac tissue plays an important role in the heart failure. The objective of this study was to compare the gene expression of individual components of the renin-angiotensin system in hearts of normotensive and hypertensive rats. Two genetically hypertensive rat strains - spontaneously hypertensive rats (SHR) and hereditary hypertriglyceridemic rats (HTG) - were compared with Wistar-Kyoto (WKY) and Lewis (LEW) normotensive controls. In addition, developmental changes in gene expression of individual components of cardiac RAS were studied in 20-day-old fetuses, 2-day-old newborns and 3-month-old HTG and LEW rats. In our study, the angiotensinogen gene expression did not differ either among adult normotensive and hypertensive strains, or during development. In contrast, the renin gene expression was significantly increased in hearts of hypertensive compared to normotensive rats. Moreover, a 5-fold increase of renin mRNA was observed in hearts of HTG rats between day 2 and the third month of age. There was also an age-dependent increase of ACE gene expression in both HTG and LEW rats which was substantially delayed in HTG hearts. In conclusion, the results of our study suggest that overexpression of the cardiac renin gene in hypertensive strains could participate in the structural and functional changes of the heart during the development of hypertension., D. Jurkovičová, Z. Dobešová, J. Kuneš, O. Križanová., and Obsahuje bibliografii
We showed recently that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, retarded the development of renal dysfunction and progression of aorto-caval fistula(ACF)-induced congestive heart failure (CHF) in Ren-2 transgenic hypertensive rats (TGR). In that study the final survival rate of untreated ACF TGR was only 14 % but increased to 41 % after sEH blockade. Here we examined if sEH inhibition added to renin-angiotensin system (RAS) blockade would further enhance protection against ACF-induced CHF in TGR. The treatment regimens were started one week after ACF creation and the followup period was 50 weeks. RAS was blocked using angiotensinconverting enzyme inhibitor (ACEi, trandolapril, 6 mg/l) and sEH with an sEH inhibitor (sEHi, c-AUCB, 3 mg/l). Renal hemodynamics and excretory function were determined two weeks post-ACF, just before the onset of decompensated phase of CHF. 29 weeks post-ACF no untreated animal survived. ACEi treatment greatly improved the survival rate, to 84 % at the end of study. Surprisingly, combined treatment with ACEi and sEHi worsened the rate (53 %). Untreated ACF TGR exhibited marked impairment of renal function and the treatment with ACEi alone or combined with sEH inhibition did not prevent it. In conclusion, addition of sEHi to ACEi treatment does not provide better protection against CHF progression and does not increase the survival rate in ACF TGR: indeed, the rate decreases significantly. Thus, combined treatment with sEHi and ACEi is not a promising approach to further attenuate renal dysfunction and retard progression of CHF., P. Kala, L. Sedláková, P. Škaroupková, L. Kopkan, Z. Vaňourková, M. Táborský, A. Nishiyama, S. H. Hwang, B. D. Hammock, J. Sadowski, V. Melenovský, J. D. Imig, L. Červenka., and Obsahuje bibliografii