The incidence of diabetes mellitus is rising worldwide. The aim of this prospective epidemiological study was to compare the effects of natural and surgical menopause on parameters of glucose metabolism. In a group of 587 repeatedly examined women, with a baseline age of 45-55 years, the following subgroups of women were separated: those after bilateral oophorectomy (BO, n=37) and those in natural menopause (NAT, n=380) including women menopausal already at baseline (POST, n=89). The study parameters including glycemia, insulinemia, HOMA-IR and betacell function using HOMA-β were determined at baseline and 6 years later. Over the study period, there was a marked rise in prediabetic and diabetic values of fasting glycemia; the percentage of women with diabetic values increased in the NAT (from 0.8 % to 3.9 %) and POST (from 2.2 % to 9.0 %) subgroups, with the highest prevalence in the BO subgroup (from 8.1 % to 10.8 %). While, among women with non-diabetic fasting glycemia, an increase in fasting glycemia was observed in all study subgroups, it was more marked in the BO subgroup than in the NAT and POST ones (p=0.02 both). This difference between NAT and BO was also found in the long-term trend of development of glycemia in non-diabetic women (p=0.014). Compared with natural menopause, bilateral oophorectomy may have an adverse effect on glucose metabolism., M. Lejsková, J. Piťha, S. Adámková, O. Auzký, T. Adámek, E. Babková, V. Lánská, Š. Alušík., and Obsahuje bibliografii
We investigated the gastric response to an ulcerogenic irritant and the change in gastric functions in an experimental rat model of obstructive jaundice, with or without biliary drainage. After biliary obstruction for 14 days, rats with ligated bile duct (BDL) were randomly divided into three groups: BDL group without biliary drainage, BDL followed by choledochoduodenostomy (CD) or a choledochovesical fistula (CVF). The gastric functions were evaluated 2 weeks after the surgery. Gastric damage, induced by orogastric administration of ethanol, was evaluated 30 min later using a lesion index and microscopic scoring was then performed on fixed stomachs. Basal gastric acid secretion was measured by the pyloric ligation method.The lesion index and maximum lesion depth did not differ in the BDL and sham groups, while they were significantly reduced in the CD group. Gastric acid output and secretory volume were reduced in the BDL group compared to the sham group, while these reductions were abolished in the CD group. Afferent denervation with capsaicin further reduced the ulcer index in the later group. Our data suggest that gastric mucosal susceptibility to injury is dependent on the normal flow of bile into the duodenal lumen, which appears to be a requirement for adaptive gastric cytoprotection., A. Cingi, R. Ahiskali, B. K. Oktar, M. A. Gülpinar, C. Yegen, B.Ç. Yegen., and Obsahuje bibliografii
The complex architecture of the liv er biliary network represents a structural prerequisite for the formation and secretion of bile as well as excretion of toxic substances through bile ducts. Disorders of the biliary tract affect a significant portion of the worldwide population, often leading to cholestatic liver diseases. Cholestatic liver disease is a condition that results from an impairment of bile formation or bile flow to the gallbladder and duodenum. Cholestasis leads to dramatic changes in biliary tree architecture, worsening liver disease and systemic illness. Recent studies show that the preva lence of cholestatic liver diseases is increasing. The availability of well characterized animal models, as well as development of visualization approaches constitutes a critical asset to develop novel pathogenetic concepts and new treatment strategies., L. Sarnova, M. Gregor., and Obsahuje bibliografii
Bilirubin is the final product of heme catabolism in the systemic circulation. For decades, increased serum/plasma bilirubin levels were considered an ominous sign of an underlying liver disease. However, data from recent years convincin gly suggest that mildly elevated bilirubin concentrations are as sociated with protection against various oxidative stress-mediated diseases, atherosclerotic conditions being the most clinically relevant. Although scarce data on beneficial effects of bilirubin had been published also in the past, it took until 1994 when the first clinical study demonstrated an increased risk of coronary heart disease in subjects with low serum bilirubin levels, and bilirubin was found to be a risk factor for atherosclerotic diseases independent of standard risk factors. Consistent with t hese results, we proved in our own studies, that subjects with mild elevation of serum levels of unconjugated bilirubin (benign hyperbilirubinemia, Gilbert syndrome) have much lower prevalence/incidence of cor onary heart as well as peripher al vascular disease. We have also demonstrated that this association is even more general, with serum bilirubin being a biomarker of numerous other diseases, often associated with increased risk of atherosclerosis. In addition, very recent data have demonst rated biological pathways modulated by bilirubin, which are responsible for observed strong clinical associations., L. Vítek., and Obsahuje bibliografii
ECM is composed of different collagenous and non-collagenous proteins. Collagen nanofibers play a dominant role in maintaining the biological and structural integrity of various tissues and organs, including bone, skin, tendon, blood vessels, and cartilage. Artificial collagen nanofibers are increasingly significant in numerous tissue engineering applications and seem to be ideal scaffolds for cell growth and proliferation. The modern tissue engineering task is to develop three-dimensional scaffolds of appropriate biological and biomechanical properties, at the same time mimicking the natural extracellular matrix and promoting tissue regeneration. Furthermore, it should be biodegradable, bioresorbable and non-inflammatory, should provide sufficient nutrient supply and have appropriate viscoelasticity and strength. Attributed to collagen features mentioned above, collagen fibers represent an obvious appropriate material for tissue engineering scaffolds. The aim of this minireview is, besides encapsulation of the basic biochemical and biophysical properties of collagen, to summarize the most promising modern methods and technologies for production of collagen nanofibers and scaffolds for artificial tissue development., L. Koláčná, J. Bakešová, F. Varga, E. Košťáková, L. Plánka, A. Nečas, D. Lukáš, E. Amler, V. Pelouch., and Obsahuje bibliografii
Spinal cord injury results in a permanent neurological deficit due to tissue damage. Such a lesion is a barrier for “communication” between the brain and peripheral tissues, effectors as well as receptors. One of the primary goal s of tissue engineering is to bridge the spinal cord injury and re-establish the damaged connections. Hydrogels are biocompatible implants used in spinal cord injury repair. They can create a permissive environment and bridge the lesion cavities by providing a scaffold for the regeneration of neurons and their axons, glia and other tissue elements. The advantage of using artificial materials is the possibility to modify their physical and chemical properties in order to develop the best implant suitable for spinal cord injury repair. As a result, several types of hydrogels have been tested in experimental studies so far. We review our work that has been done during the last 5 years with various types of hydrogels and their applications in experimental spinal cord injury repair., A. Hejčl, P. Lesný, M. Přádný, J. Michálek, P. Jendelová, J. Štulík, E. Syková., and Obsahuje bibliografii a bibliografické odkazy
Noble gases are known for their inertness. They do not react chemically with any element at normal temperature and pressure. Through that, some of them are known to be biologically active by their sedative, hypnotic and analgesic properties. Common inhalation anesthetics are characterized by some disadvantages (toxicity, decreased cardiac output, etc). Inhalation of xenon introduces anesthesia and has none of the above disadvantages, hence xenon seems to be the anesthetic gas of the future (with just one disadvantage - its cost). It is known that argon has similar anesthetic properties (under hyperbaric conditions), which is much cheaper and easily accessible. The question is if this could be used in clinical practice, in anesthesia of patients who undergo treatment in the hyperbaric chamber. Xenon was found to be organ-protective. Recent animal experiments indicated that xenon decreases infarction size after ischemic attack on brain or heart. The goal of our study is to check if hyperbaric argon has properties similar to those of xenon., J. Růžička, J. Beneš, L. Bolek, V. Markvartová., and Obsahuje bibliografii
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes., J. Beneš, P. Šunka, J. Králová, J. Kašpar, P. Poučková., and Obsahuje bibliografii
Obesity is a strong cardiometabolic (CM) risk factor in children. We tested potential CM risk in obese/overweight children and the effect of an intensive lifestyle intervention using newer CM markers: atherogenic index of plasma AIP [Log(TG/HDL-C)], apoB/apoAI ratio and a marker of insulin resistance HOMA-IR. The participants (194 girls, 115 boys, average age 13) were enrolled in an intensive, one-month, inpatient weight reduction program. The program consisted of individualised dietary changes and the exercise program comprised aerobic and resistance training. Anthropometrical and biochemical parameters in plasma and CM risk biomarkers - (AIP, apoB/apoAI ratio and HOMA-IR) were examined before and after the intervention. AIP and HOMA-IR significantly correlated with BMI while apoB/apoAI ratio did not. Only AIP and HOMA-IR showed systematic increases according to the level of obesity by BMI quartiles. Lifestyle intervention significantly improved anthropometrical and biochemical values and the biomarkers too. The response of lipid parameters to the intervention was considerably higher in boys than in girls. The children were stratified into three risk categories according to AIP, where 13.8 % of boys and 5.3 % of girls fell into high risk category. The monitored biomarkers may complement each other in the prognosis of CM risk. AIP was strongly related to obesity and to lipid and glycid metabolism, while the relationship of the apoB/apoAI ratio to obesity and glycid metabolism was not significant. The obese children benefited from the intensive lifestyle intervention which improved the anthropometrical and biochemical parameters and CM risk biomarkers., M. Vrablík, M. Dobiášová, L. Zlatohlávek, Z. Urbanová, R. Češka., and Obsahuje bibliografii