Dryocosmus kuriphilus (Hymenoptera: Cynipidae), also known as the Asian chestnut gall wasp, is a non-native invasive species that has recently appeared in many regions of Europe, including the Iberian Peninsula. This species is an important pest of chestnut trees in several regions and is of concern for foresters in these areas. The results of this research revealed 14 different hotspots of infestation of D. kuriphilus and resulted in the development of models that predict the distribution of D. kuriphilus in Spain over the next 37 years (2019-2055). These results indicate a rapid spread in all Spanish chestnut forests and identify areas that are theoretically highly suitable and susceptible to colonization by this cynipid based on predictions of three different niche models. Although D. kuriphilus is able to induce galls on all chestnut trees, the models indicate that there are differences in the suitability of the different regions for this species. This differential suitability results in some areas having better environmental conditions than others for D. kuriphilus, which is a factor that should be taken into account in its management and biological control. This study of the current distribution, patterns of dispersal using GIS and potentially suitable areas for D. kuriphilus, using niche models will assist in the management and control of this pest in Spain., Diego Gil-Tapetado, José F. Gómez, Francisco J. Cabrero-Sañudo, José L. Nieves-Aldrey., and Obsahuje bibliografii
Black rats (Rattus rattus) are native to the Indian subcontinent but have now colonized most continents and islands following human movements and international trade. They are involved in the circulation and transmission to humans of many zoonotic agents as well as in massive damage to food stocks and native biodiversity in the regions they have settled. This study investigates the genetic diversity and possible origins of black rats from Benin, West Africa. We sequenced the complete mitochondrial cytochrome b gene in 90 individuals from nine localities in Benin. These sequences were subsequently compared to 390 other cytochrome b haplotypes from individuals from various European, Asian, American and African localities. Nucleotide polymorphism analysis, haplotype network and maximum likelihood phylogenetic tree reconstructions showed low mitochondrial diversity in black rats from Benin. Our results also suggest at least two distinct introduction events: one introduction probably occurred during the spice trade (15th-17th century) through the Indies Road connecting Europe to Asia. Other introduction events could have occurred more recently following the intensification of globalized trade from the eighteenth century, and onwards.
We deployed branch traps in an ash (Fraxinus) plantation to investigate how Agrilus planipennis behavior is associated with Fraxinus pennsylvanica condition and dispersal patterns. Data were collected from traps with or without the presence of beetle visual decoys, and from a yearly survey of exit holes. The traps were placed on trees that were either clearly declining, with most foliage arising from epicormic sprouting, or on apparently healthy trees, with little evidence of damage or decline. We calculated correlations of exit holes among neighboring tree rings and also between exit holes and male trap captures. The damaged trees the traps were hung upon had more cumulative exit holes observed than the corresponding healthy trees. However, there was otherwise no evidence that the experiment was biased by differences in exit hole patterns of the surrounding trees. Male captures were greater on decoy-baited traps than controls and this decoy effect was most clearly apparent late in the season when traps were placed on healthy trees. There were also patterns of correlations between male captures and exit hole numbers that may be indicative of short-range mate finding-and dispersal behaviors. Female captures were sparser, but were positively affected by decoys on healthy and declining trees early in the season. Thus, the results suggest that the placement of such traps on healthier trees will maximize detection, and the branch traps also show promise for further use in dispersal studies., Michael J. Domingue, Jennifer Berkebile, Kim Steiner, Loyal P. Hall, Kevin R. Cloonan, David Lance, Thomas C. Baker., and Obsahuje bibliografii
Tapinoma melanocephalum is a worldwide distributed, highly invasive ant species. It lives in close association with human societies and its distribution is human-mediated in large measure. The geographical origin of this ant species is unknown, but its introduction in areas previously devoided of its presence can represent a threat to the native biota, act as an agricultural pest or as a pathogen vector. To investigate the genetic structure and phylogeography of this species we identified 12 new polymorphic microsatellite markers, and in addition, we tested and selected 12 ant-universal microsatellites polymorphic in T. melanocephalum. We genotyped 30 individuals from several islands of Micronesia and Papua-New Guinea. All 24 loci exhibited strong homozygosity excess (45-100%, mean = 86%), while the number of alleles per locus reached usual values (2-18, mean = 6.5), resulting in levels of expected heterozygosity much higher than observed. Based on several robust tests, we were able to exclude artefacts such as null alleles and allelic dropout as a possible cause of the observed pattern. Homozygosity excess might be a consequence of founder effect, bottleneck and/or inbreeding. As our sample population was composed of individuals from several distinct localities, the Wahlund effect might have contributed to the increased homozygosity as well. Despite the provisionally observed deviation from the Hardy-Weinberg equilibrium, the newly developed microsatellites will provide an effective tool for future genetic investigations of population structure as well as for the phylogeographic study of T. melanocephalum., Jan Zima Jr., Ophélie Lebrasseur, Michaela Borovanská, Milan Janda., and Obsahuje bibliografii
The invasion success of gibel carp (Carassius gibelio) depends on demographic and competitive traits. The major biological trait responsible for the invasiveness of C. gibelio is the mode of reproduction. Apart from sexual reproduction, which is typical in fish, C. gibelio is a unique cyprinid species able to reproduce through asexual gynogenesis, which is also known as sperm-dependent parthenogenesis, observed in all-female populations. Though the sexual and asexual forms of C. gibelio co-exist widely in natural habitats, the gynogenetic form has the capacity to modulate the range of effective ecological niches, which may facilitate the process of invasion. In this paper, we reviewed current knowledge of the sexual and gynogenetic forms of gibel carp along with their physiological advantages, immunological traits, and ability to withstand different environmental conditions. As parasitic infection may directly alter the immunology of hosts, and also indirectly alter their investment in reproduction, we provide some insights into the role of parasites as one of the potential drivers facilitating the coexistence of asexual and sexual forms. We highlight evidence that gibel carp have been identified as a serious threat to native species; hence, its impact on the ecosystem is also discussed.
The longhorn crazy ant, Paratrechina longicornis (Latreille), is a ubiquitous agricultural and urban pest that has invaded most tropical and subtropical regions. Although P. longicornis has been found worldwide for more than a century, the genetic structure, origin, and invasion history of this species have not yet been extensively studied, partially because of the limited number of genetic markers currently available. In the present study, we developed 36 polymorphic microsatellite markers for P. longicornis and characterized these markers by genotyping P. longicornis workers from 74 colonies in East and Southeast Asia. All loci were polymorphic, with the number of alleles per locus ranging from 3 to 18 (8.5 on average). Extremely high levels of heterozygosity were found in all populations, suggesting that workers are invariably produced from the mating of divergent queen and male lineages. Queens and males possess non-overlapping allele size ranges at 18 loci, indicating the potential resolving power of the subset of markers in inferring the history of queen and male lineages. Genetic differentiation among three studied populations was low yet significant and may likely reflect their close association with human activities. Overall, the new microsatellite markers developed in the present study serve as a practical tool to reconstruct routes of invasion and assess the population genetics of this invasive ant.
Alien phytophagous insects are often introduced along with their host plants, creating opportunities for troublesome invasions. Yet, not all of them are able to successfully colonize novel host plants. In this study, we investigated host selection by the alien leaf miner Phyllonorycter leucographella (Zeller, 1850) on both its original host and novel host plants in the insect's alien range. We predicted that this insect's percentage infestation of the original host would be positively related to its specific leaf area (SLA), because high-SLA leaves are nutritious and have thin cuticles, traits related to high offspring developmental success. We further hypothesized that this host selection process would apply in the selection of novel host plants. Our results show that this leaf miner selects leaves of its original host plant, Pyracantha coccinea, according to their SLA values. The SLA value was also positively related to the probability of P. leucographella infesting and successfully developing on novel host plants. The selection of high-SLA plants by the moth leads to a high developmental success on novel host plants in the first (summer) generation, but it is likely to be maladaptive in the second (overwintering) generation, because in temperate Europe, high SLA values are associated with deciduous plants that shed their leaves in autumn. It is likely that the apparent maladaptive selection of novel host plants by P. leucographella reduces the invasiveness of this pest by preventing its establishment on native plants., Urszula Walczak, Michał Bogdziewicz, Roma Żytkowiak, Piotr Karolewski, Edward Baraniak., and Obsahuje bibliografii
The study aimed to recognize whether the activity of a semi-aquatic invasive carnivore – the American mink Neovison vison – is related to the distribution of waterbird colonies. For this reason, we monitored mink occurrence in lake reedbeds and the fate of artificial nests imitating those of the great crested grebe Podiceps cristatus. The location of artificial nests in the grebe colony increased the probability of their survival compared to those placed outside the grebe colony. During the study, mink activity increased over time. In general, it was lower in colonies than outside of them, suggesting that the presence of natural nests does not increase the probability of mink occurrence in lake reedbeds. However, mink activity was negatively correlated with the distance from the lake shoreline and differed spatially according to the presence or absence of natural grebe nests. In grebe colonies, the probability of mink occurrence at greater distances from the lake shoreline was higher than outside, which can be explained by optimizing swimming effort while searching for prey. In conclusion, mink activity in colonies was lower than in areas with no waterbird nests, and nest location in a colony decreased predation risk by mink.
Abiotic and biotic factors determine success or failure of individual organisms, populations and species. The early life stages are often the most vulnerable to heavy mortality due to environmental conditions. The deer ked (Lipoptena cervi Linnaeus, 1758) is an invasive insect ectoparasite of cervids that spends an important period of the life cycle outside host as immobile pupa. During winter, dark-coloured pupae drop off the host onto the snow, where they are exposed to environmental temperature variation and predation as long as the new snowfall provides shelter against these mortality factors. The other possible option is to passively sink into the snow, which is aided by morphology of pupae. Here, we experimentally studied passive snow sinking capacity of pupae of L. cervi. We show that pupae have a notable passive snow sinking capacity, which is the most likely explained by pupal morphology enabling solar energy absorption and pupal weight. The present results can be used when planning future studies and when evaluating possible predation risk and overall survival of this invasive ectoparasite species in changing environmental conditions., Sirpa Kaunisto, Hannu Ylönen, Raine Kortet., and Obsahuje bibliografii
Identification of factors that facilitate successful completion of invasion process stages by nonnative species is a major priority among invasion biologists. Stage-based analyses of non-native fish species traits have been conducted for several regions, but not for a subtropical non-native species hotspot like peninsular Florida. Typically, establishment is the first stage of analysis but Florida is home to many nonnative fish species that have successfully reproduced, yet failed to establish. Therefore, we used life history traits and three model types (categorical and regression trees, logistic regression, and discriminant analysis) to predict successful reproduction and establishment by non-native fishes in peninsular Florida. Statistical models for predicting both successful reproduction and establishment suggested parental care was the most important variable, but other traits included in the best models differ between the two stages. The high level of parental care in successful non-native fishes of Florida is unique among non-native freshwater fish faunas across the United States. Other studies also found that suites of traits used to predict various stages of the invasion process differ, suggesting that stage-based analyses provide a good foundation for better understanding invasion processes. Our results may be applied to stage-based risk screening tools for nonnative fishes in Florida.