Six types of sphaeractinomyxon are reported from the coelomic cavity of oligochaetes collected from the Minho River estuary in northern Portugal. Four new types are morphologically and molecularly described from freshwater species belonging to the genera Psammoryctides Hrabě and Potamothrix Vejdovský et Mrázek in the upper estuary, thus significantly increasing the number of known freshwater sphaeractinomyxon. In the lower estuary, sphaeractinomyxon types 8 and 10 of Rangel et al. (2016) are recorded infecting the marine oligochaete Tubificoides pseudogaster (Dahl). A single specimen of T. pseudogaster further displayed infection by one of the four new types found in the upper estuary, suggesting the involvement of sphaeractinomyxon in the life cycles of myxosporean species that infect migratory fish hosts. The acquisition of these second hosts is proposed to have allowed the myxosporean counterparts of sphaeractinomyxon to cross environmental barriers and conquer new habitats. Phylogenetic analyses of the SSU rRNA gene reveal the four new types clustering within the monophyletic clade of mugiliform-infecting myxobolids, strengthening the previously proposed involvement of the sphaeractinomyxon collective group in the life cycles of this specific group of myxosporeans. Endocapsa types also cluster within the latter clade, having actinospores that differ from those of sphaeractinomyxon only in the presence of valvular swellings that do not change when in contact with water. In this study, however, one type was found displaying actinospores with and without valvular swellings in the same oligochaete specimen. This overlap in actinospore morphology is given as grounds for the demise of the endocapsa collective group., Sónia Rocha, Ängela Alves, Carlos Antunes, Pedro Fernandes, Carlos Azevedo and Graça Casal., and Obsahuje bibliografii
Serpin is a broadly distributed superfamily of proteins that have a crucial role in regulating various immune reactions. Herein we identified a serpin-10 gene from Antheraea pernyi that encodes a 1557 amino acid residue protein with a predicted molecular weight of 58.76 kDa. Recombinant Apserpin-10 protein was expressed in a prokaryotic expression system (Escherichia coli) and the purified protein was used to prepare rabbit anti-Apserpin-10 polyclonal antibodies. Quantitative real-time polymerase chain reaction and western blot analysis indicate that Apserpin-10 was transcribed in all the tissues examined, including haemolymph, malpighian tubules, fat body, silk gland, integument and mid gut; the greatest expression level of Apserpin-10 was recorded in the fat body and haemocytes. The comparison of different developmental stages showed that Apserpin-10 transcript level was highest in 5th instar larvae, while the lowest expression was recorded at the egg stage. We also investigated the expression patterns of Apserpin-10 in fat body and haemocyte samples, following administration of heat-inactivated gram-positive bacteria (Micrococcus luteus), gram negative bacteria (Escherichia coli), a fungus (Beauveria bassiana) and virus (nuclear polyhedrosis virus, NPV). A substantial up-regulation of Apserpin-10 expression was recorded following pathogen challenge in both the tissues tested. Further the knock down of Apserpin-10 led to down regulation of antimicrobial peptide genes. Altogether, our results indicate that Apserpin-10 is involved in the innate immunity of A. pernyi., Saima Kausar, Cen Qian, Muhammad Nadeem Abbas, Bao-Jian Zhu, Ya Liu, Lei Wang, Guo-Qing Wei, Yu Sun, Chao-Liang Liu., and Obsahuje bibliografii
Satellite DNAs are the major repetitive DNA components in eukaryotic genomes. Although satellite DNA has long been called "parasite DNA" there is substantial evidence that it could be associated with some functions of chromosome biology. Ladybird beetles (Coccinellidae) are one of the largest and most important groups of beetles. Many ladybirds are of economic interest as biological control agents because they eat some agricultural pests such as aphids and scale insects. However, other species are phytophagous and can damage crops. Despite the ecological importance of the latter group there are no studies on their satellite DNA. A satellite DNA family was isolated and characterized in the ladybird Henosepilachna argus. This satellite DNA is organized in tandem repeats of 658 bp and is A + T rich (67.3%). The recorded high sequence conservation of the monomers together with the detection of putative gene conversion processes indicate concerted evolution. Reverse transcription polymerase chain reaction (RT-PCR) revealed that this satellite DNA is transcribed and in situ hybridization its location in the subtelomeric regions of all chromosomes except the long arm of the X chromosome. The presence of this satellite DNA in other species of the genus Henosepilachna and Epilachna was also tested using PCR. The results indicate that this satellite DNA sequence is so far specific to H. argus., Pablo Mora, Jesús Vela, Areli Ruiz-Mena, Teresa Palomeque, Pedro Lorite., and Obsahuje bibliografii
A novel panel of 16 microsatellite markers, obtained by pyrosequencing of enriched genomic libraries, is reported for the flightless European bushcricket Ephippiger diurnus (Dufour) (Orthoptera: Tettigoniidae). Five multiplex and one simplex PCR protocols were optimized, and the polymorphism at the 16 loci was assessed in two natural populations from southern France. The mean allele number and (expected mean heterozygosity) were 8.94 (0.71) and 6.57 (0.70), respectively, in each population. Several loci were at Hardy-Weinberg disequilibrium (HWD), possibly due to the incidence of null alleles. The occurrence of null alleles has been previously reported for this species, and it is a common feature of microsatellite loci in Orthoptera. Cross-amplification tests demonstrated the transferability of some of these loci to other ephippigerine species. The microsatellite loci reported here substantially increase the number of available loci for this species and will afford an accurate picture of E. diurnus phylogeography, the genetic structure of its populations, and an improved understanding of the evolution of male song and other sexually-selected traits in this highly variable species., Yareli Esquer-Garrigos, Michael D. Greenfield, Virginie Party, Réjane Streiff., and Obsahuje bibliografii
The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was sequenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome. The nucleotide composition of the genome is greatly A+T biased (81.09%), with a negative AT skewness (-0.007), indicating the presence of fewer As than Ts, similar to other Noctuoidea. The A+T-rich region is 343 bp long, and contains some conserved regions, including an "ATAGA" motif followed by a 19 bp poly-T stretch, a microsatellite-like (AT)9 and a poly-A element, a characteristic shared with other lepidopteran mitogenomes. Phylogenetic analysis, based on 13 PCGs using Maximum likelihood methods revealed that S. robusta belongs to the superfamily Noctuoidea., Yu Sun, Sen Tian, Cen Qian, Yu-Xuan Sun, Muhammad N. Abbas, Saima Kausar, Lei Wang, Guoqing Wei, Bao-Jian Zhu, Chao-Liang Liu., and Obsahuje bibliografii
Recently a large number of studies have reported an increase in the variability in the climate, which affects behavioural and physiological adaptations in a broad range of organisms. Specifically, insects may be especially sensitive to climatic fluctuations, as their physiology and life history traits, like those of other ectotherms, are predominantly affected by environmental factors. Here we aimed to investigate climate-induced changes in several morphometric measures of the Heath Fritillary in North-Eastern Hungary, which is a highly diverse transitional area. During this study we tested the following hypotheses: (i) climate affects genitalia and body size to various degrees (ii) increasing variability in climate induces higher levels of fluctuating asymmetry and variance in all morphological characters. To our knowledge, this study is the first to analyse simultaneously wing size and structure of genitalia of a butterfly in response to variability in climate. Our findings suggest that wing and genital traits may exhibit similar degrees of stability in response to a more variable climate, although the response in terms of forewing size differs from that of other body measurements and the structure of the genitalia. These findings suggest that global climate change may affect lepidopteran body metrics over longer periods of time. Our findings parallel the results of investigations showing that insect morphology might be modified by environmental changes, which is especially the case for those body parts that are phenotypically very variable. However, we found no evidence that increasing variability in climate would induce higher levels of fluctuating asymmetry and greater variability in morphological characters., Edit Juhász, Zsolt Végvári, János P. Tóth, Katalin Pecsenye, Zoltán Varga., and Obsahuje bibliografii
Cysteine protease is a superfamily of widespread proteolytic enzymes and plays a major role in larval invasion, migration, exsheathing, survival and immune evasion in parasites. In the present study, the gene coding cysteine proteinase of the nematode Trichinella spiralis (Owen, 1835) was cloned into pQE-80L and subsequently expressed in E. coli JM109. The rTsCP was purified and its antigenicity was identified by Western blot and ELISA. Using anti-rTsCP serum the native TsCP was identified in muscle larval crude proteins. The results of quantitative real-time PCR and immunofluorescence test demonstrated that the TsCP was expressed in all stages of T. spiralis and located mainly in cuticle, stichosome and reproductive organs. The immunisation of mice with rTsCP elicited Th2-predominant immune responses. Anti-rTsCP antibodies could partially inhibit the in vitro larval invasion of intestinal epithelial cells and kill the newborn larvae by an antibody-dependent cell-mediated dose-dependent cytotoxicity. The vaccinated mice exhibited a 54% reduction of adults and a 33% reduction of muscle larvae following challenge infection. The results suggested that the TsCP might be an indispensable protein in Trichinella invasion, development and survival of T. spiralis in hosts, and could be a potential vaccine target against infection., Yan Yan Song, Li Ang Wang, Hua Na Ren, Xin Qi, Ge Ge Sun, Ruo Dan Liu, Peng Jiang, Xi Zhang, Jing Cui, Zhong Quan Wang., and Obsahuje bibliografii
In herbivorous insects, differences in the degree of specialization to host plants emerge when the distribution of an herbivore differs from that of its host plants, which results in a mosaic of populations differing in performance on the different host plants. Using a specialized butterfly, Battus polydamas archidamas Boisduval, 1936, which feeds exclusively on the genus Aristolochia, we test whether host plant co-occurrence and associated differences in host quality modify local adaptation in terms of larval preference and performance. We compared individuals from a monospecific host stand of Aristolochia chilensis with those from a mixed host stand of A. chilensis and A. bridgesii. Individuals were reared in a reciprocal transfer experiment in which source population and the host species fed to larvae were fully crossed in a two-by-two factorial experiment in order to quantify their preference, performance (development time, size and growth rate) and survival. Individuals from both populations preferred the species they ate during their larval development over the other host, which indicates host plant-induced preference with non-adaptive implications. Larvae from mixed and monospecific stands grew faster and survived better when reared on A. bridgesii than A. chilensis. Larvae from a monospecific host stand grew slower and fewer individuals survived under the same local conditions, which is contrary to expectations. Therefore, rearing the butterfly on A. bridgesii consistently resulted in better performance, which indicates that the monospecific population is less well adapted to its host than the mixed population. Variation in the occurrence of the two host plants in the two populations can result in divergent selection due to the variation in plant quality, which in this case could result in opposing adaptive processes., Rodrigo S. Rios, Cristian Salgado-Luarte, Gisela C. Stotz, Ernesto Gianoli., and Obsahuje bibliografii
The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii
In the present work, we have characterized the chromosomes of 13 Cassidinae beetles, belonging to four tribes, the broad aim being to increase the cytogenetic data and establish the mechanisms involved in chromosome evolution of this subfamily, which appear to be conserved karyotypically, i.e. 2n = 16 + Xyp. The analysis of mitotic and meiotic cells revealed a high diversity of diploid numbers (2n = 18, 2n = 22, 2n = 26, 2n = 32, 2n = 36, 2n = 40, 2n = 42), and the presence of sex chromosome system of the Xyp type in most species, with the exception of two representatives that exhibited Xyr and XY systems. C-banding showed constitutive heterochromatin predominantly localized in the pericentromeric region of the chromosomes, but differences regarding the number of chromosomes with positive C-bands, intensity of the blocks, and presence of additional bands in autosomes and/or sex chromosomes were observed among the species investigated. Our data revealed that the karyotype 2n = 16 + Xyp does not occur in all 13 tribes of the Cassidinae characterized cytogenetically, seeming to be only a shared feature among the species of the Cassidini. Variations in the C-band pattern, mainly in closely related species, suggest that the interspecific karyotype diversification occurred as a result of changes in the quantity and distribution of constitutive heterochromatin. The occurrence of the Xyp sex chromosome system in the tribe Mesomphaliini, which showed the highest diversity of simple and multiple systems among the coleopteran as a whole, reinforces the view that derived systems originated by chromosome rearrangements involving the Xyp ancestral system., Amália T. Lopes, Flávia R. Fernandes, Marielle C. Schneider., and Obsahuje bibliografii