Flavin7 (F7) is a nutritional supplement often taken by cancer patients in Central Europe during chemo- and radiation therapy. In this study, investigation of the antiproliferative and antiangiogenic activities of this supplement were performed. Flavin7 showed antiprolif erative activity in Jurkat as well as in HeLa cells. It significantly reduced the growth of both cancer cell lines at the doses of 200 μg/ml to 20 μg/ml (p<0.001 and p<0.01, respectively). In F7-treated Jurkat cells we found a significant increase in the fraction of cells with sub-G0/G1 DNA content, which is considered to be a marker of apoptotic cell death. Apoptosis was also confirmed by annexin V staining and DNA fragmentation. Furthermore, F7 at the doses of 100 μg/ml to 4 μg/ml inhibited endothelial cell migration and capillary tube formation what indicates its potential antiangiogenic properties. Flavin7 also inhibited the activity of matrix metalloproteinases (MMPs), preferentially MM P-9, at the doses of 100 μg/ml to 4 μg/ml. Our data suggest that F7 possesses marked antiproliferative and antiangiogenic properties in vitro. Further research is needed to elucidate also its in vivo activities., J. Mojžiš, M. Šarišský, M. Pilátová, V. Voharová, L. Varinská, G. Mojžišová, A. Ostro, P. Urdzík, R. Dankovčik, L. Mirossay., and Obsahuje bibliografii a bibliografické odkazy
t would be desirable to expand the existing general knowledge concerning direct action of metals on the ovary. Nevertheless, the results of testing of iron compound on porcine ovarian cells should be interpreted carefully because iron is an essential element which could also induce changes in cellular processes. The aim of this in vitro study was 1) to examine dose-dependent effects of iron on the secretory activity of porcine ovarian granulosa cells, and 2) to outline the potential intracellular mediators mediating these effects. Specifically, we evaluated the effect of iron sulphate on the release of insulin-like growth factor I (IGF-I) and progesterone, as well as the expression of markers of proliferation (cyclin B1) and apoptosis (caspase-3) in porcine ovarian granulosa cells. Concentrations of IGF-I and progesterone were determined by RIA, cyclin B1 and caspase-3 expression by immunocytochemistry (ICC). Our results show a significantly decreased IGF-I secretion by ovarian granulosa cells after iron sulphate addition at the doses 0.5 and 1.0 mg/ml. The iron sulphate additions at do ses 0.17 and 1.0 mg/ml had no effect on progesterone secretion. In contrast, iron sulphate addition at doses 0.17-1.0 mg/ml resulted in stimulation of cyclin B1 and caspase-3 expression. In conclusion, the present results indicate a direct effect of iron on 1) secretion of growth factor IGF-I but not steroid hormone progesterone, 2) expression of markers of proliferation (cyclin B1), or 3) apoptosis (caspase-3) of porcine ovarian granulosa cells. These results support an idea that iron could play a regulatory role in porcine ovarian function: hormone release, prolif eration and apoptosis., A. Kolesarova ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of this in vitro study was to examine the secretion activity (progesterone, 17β-estradiol and insulin-like growth factor-I) of rat ovarian fragments after molybdenum (Mo) addition. Rat ovarian fragments were incubated with ammonium molybdate (NH4)6Mo7O24.4H2O at the doses 90, 170, 330 and 500 μg.ml-1 for 24 h and compared with control group without Mo addition. Release of progesterone (P4), estradiol (17β-estradiol) and insulin-like growth factor I (IGF-I) by ovarian fragments was assessed by radioimmunoassay (RIA). Data show that P4 release by ovarian fragments was not affected by (NH4)6.Mo7O24.4H2O addition at all the doses used (90-500 μg.ml-1). However, addition of ammonium molybdate was found to cause a significant (P<0.05) dose-dependent decrease (at the doses 90, 170 and 500 μg.ml-1) in release of 17β-estradiol by ovarian fragments in comparison to control. Also, addition of ammonium molybdate significantly (P<0.05) inhibited IGF-I release at all the doses (90-500 μg.ml-1) used in the study. Results suggest ammonium molybdate induced inhibition in the release of growth factor IGF-I and its dosedependent effect on secretion of steroid hormone 17β-estradiol but not progesterone. These data contribute to new insights regarding the mechanism of action of Mo on rat ovarian functions., S. Roychoudhury, L. Detvanova, A. V. Sirotkin, R. Toman, A. Kolesarova., and Obsahuje bibliografii
Skin healing process is postnatally always associated with scarring of various extent. Based on the clinical experience of plastic surgeons, the healing after lip cleft reconstruction is surprisingly almost scar-less when it is carried out within a few first days after birth. This phenomenon is not seen in delayed cases. In order to decipher causative mechanism, we have isolated and studied principal cell populations, keratinocytes and fibroblast, from residual tissue samples after reconstructive operation (N=39) performed at various age (0-9 years). These cells play the pivotal role in the healing and that is why we focused on description of their phenotype and also functionality with respect to age. We have identified a population of remarkably small cells in explants from newborns (day 0-10). These small cells were strongly positive for markers of low differentiated keratinocytes, keratin-8 and -19, and moreover also for vimentin. In the explants cultures from older babies this population was missing. Fibroblasts from newborns and older patients differed namely in terms of nestin expression and also in the production of extracellular matrix components. We conclude that in vitro described properties of keratinocytes and fibroblasts in newborns could participate on the almost scar-less wound healing in earliest neonatal period., E. Krejčí, O. Kodet, P. Szabo, J. Borský, K. Smetana Jr., M. Grim, B. Dvořánková., and Obsahuje bibliografii
Interspecies differences in glycosidation potential in mammalian tissues represent a factor contributing to ambiguity when endobiotic and/or xenobiotic metabolic pathways are extrapolated from animals to man. Using the TLC/autoradiographic technique, we conducted an in vitro investigation involving mouse, rat, monkey, as well as human liver and kidney microsomes to evaluate their glycoconjugation potential towards 3H-labeled, purine-derived selective inhibitors of cyclin-dependent kinases such as olomoucine, bohemine, roscovitine, 6-(2-hydroxybenzyl)amino-2-(1-hydroxymethyl-2-methylpropyl)amino-9-isopropylpurine (compound A-4), and 6-(3-hydroxybenzyl)amino-2-[(1(R/S)-hydroxymethyl)propyl]amino-9-isopropylpurine (compound A-5) as aglycones. Principally, this study confirmed the aliphatic hydroxyl group of olomoucine-type inhibitors as a relatively suitable target for glucuronide, glucoside, xyloside, galactoside, and/or N-acetylaminoglucoside conjugation. Of the tissues examined, only the mouse microsomes were able to perform glucosidation and galactosidation reactions with the aglycones. On the other hand, monkey microsomes were superior to the mouse microsomes in a variety of glucuronide conjugates produced with compounds A-4 and A-5., K. Červenková, M. Belejová, Z. Chmela, M. Rypka, D. Riegrová, K. Michnová, K. Michalíková, I. Šúrová, A. Brejcha, J. Hanuš, B. Černý, K. Fuksová, L. Havlíček, J. Veselý., and Obsahuje bibliografii
Chronic hypoxia results in hypoxic pulmonary hypertension characterized by fibrotization and muscularization of the walls of peripheral pulmonary arteries. This vessel remodeling is accompanied by an increase in the amount of lung mast cells (LMC) and the presence of small collagen cleavage products in the vessel walls. We hypothesize that hypoxia activates LMC, which release matrix metalloproteinases (MMPs) cleaving collagen and starting increased turnover of connective tissue proteins. This study was designed to determine whether in vitro hypoxia stimulates production of MMPs in rat LMC and increases their collagenolytic activity. The LMC were separated on the Percoll gradient and then were divided into two groups and cultivated for 24 h in 21 % O2 + 5 % CO2 or in 10 % O2 + 5 % CO2. Presence of the rat interstitial tissue collagenase (MMP-13) in LMC was visualized by immunohistological staining and confirmed by Western blot analysis. Total MMPs activity and tryptase activity were measured in both cultivation media and cellular extracts. Exposure to hypoxia in vitro increased the amount of cells positively labeled by anti-MMP-13 antibody as well as activities of all measured enzymes. The results therefore support the concept that LMC are an important source of increased collagenolytic activity in chronic hypoxia., H. Maxová, J. Novotná, L. Vajner, H. Tomášová, R. Vytášek, M. Vízek, L. Bačáková, V. Valoušková, T. Eliášová, J. Herget., and Obsahuje bibliografii a bibliografické odkazy
Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrasonic energy. Because the basis of the photodynamic damaging effect on cells consists in the production of reactive oxygen species (ROS), we focused our study on whether the ultrasound can increase ROS production within cancer cells. Particularly, we studied ROS formation in ultrasound pretreated breast adenocarcinoma cells during photodynamic therapy in the presence of chloroaluminum phthalocyanine disulfonate (ClAlPcS2). Production of ROS was investigated by the molecular probe CM-H2DCFDA. Our results show that ClAlPcS2 induces higher ROS production in the ultrasound pretreated cell lines at a concentration of 100 μM and light intensity of 2 mW/cm2. We also observed a dependence of ROS production on photosensitizer concentration and light dose. These results demonstrate that the photodynamic effect on breast cancer cells can be enhanced by ultrasound pretreatment., H. Kolářová, R. Bajgar, K. Tománková, E. Krestýn, L. Doležal, J. Hálek., and Obsahuje bibliografii
Five Malaysian isolates of the protozoan Plasmodium falciparum Welch were cultured in vitro following the method of Träger and Jensen (1976, 1977) and subsequently cloned using the limiting dilution method of Rosario (1981). Thirty clones were obtained and were later characterized against schizontocidal drugs, chloroquinc, mefloquine and quinine, using the modified in vitro microtechnique. Results showed that these local isolates were heterogenous and most of the clones exhibited similar pattern of susceptibility as their parent isolate except for ST 168 clone and two ST 195 clones that were sensitive but two ST 165 clones, two ST 168 clones and five ST 195 clones were resistant against quinine, respectively. Results also indicated that they were pure clones compared to their parent isolate because their drug susceptibility studies were significantly different (p < 0.05).
Gluteal muscle contracture (GMC) is a chronic fibrotic disease of gluteal muscles due to multiple etiologies. The main pathologic process is characterized by proliferation of fibroblasts and excessive accumulation of collagen in the extracellular matrix of the muscle. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid and has been reported to be associated with various fibrotic diseases. However, the role of S1P in GMC remains unknown. Here in this articl e, High-perform ance liquid chromatography and immunohistochemistry were applied to evaluate S1P localization and expression in clinical samples from patients with GMC, Quantitative real time PCR, Western blot, and enzyme-linked immunosorbent assa y were used to explore the link between transforming growth factor-β 1 (TGF-β 1), plasminogen activator inhibitor-1 (PAI-1) and S1P. The results showed that S1P was enhanced in contraction band (CB) tissues. Studies using the cell proliferation and transformation assay indicated that exogenous S1P stimulated CB fibroblast proliferation in a time-depen dent manner and in higher concentration also in a dose-dependent manner. Furthermore, we demonstrated that S1P not only promoted collagen type I production, but also up-regulated mRNA and protein expression of transforming growth factor-β 1 and plasminogen activator inhibitor-1. These findings suggest that S1P may regulate increased synthesis of collagen and other fibrogenic factors, and significantly contributes to the process of gluteal muscle scarring in patients with GMC., A. Babicová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy