Processes of adult neurogenesis can be influenced by environmental factors. Here, we investigated the effect of microwave radiation (MWR) on proliferation and cell dying in the rat rostral migratory stream (RMS) - a migration route for the neuroblasts of the subventricular zone. Adult and juvenile (two weeks old) rats were exposed to a pulsed-wave MWR at the frequency of 2.45 GHz for 1 or 3 h daily during 3 weeks. Adult rats were divided into two groups: without survival and with two weeks survival after irradiation. Juvenile rats survived till adulthood, when were tested in the light/dark test. Proliferating cells in the RMS were labeled by Ki-67; dying cells were visualized by Fluoro-Jade C histochemistry. In both groups of rats irradiated as adults we have observed significant decrease of the number of dividing cells within the RMS. Exposure of juvenile rats to MWR induced only slight decrease in proliferation, however, it strikingly affected cell death even two months following irradiation. In addition, these rats displayed locomotor hyperactivity and decreased risk assessment in adulthood. Our results suggest that the long-lasting influence of radiation is manifested by affected cell survival and changes in animals´ behavior., A. Raček, K. Beňová, P. Arnoul, M. Závodská, A. Angelidis, V. Cigánková, V. Šimaiová, E. Račeková., and Obsahuje bibliografii
The oxidative stress hypothesis of aging suggests that accumulation of oxidative damage is a key factor of the alterations in physiological function during aging. We studied age-related sensitivity to oxidative modifications of proteins and lipids of cardiac sarcoplasmic reticulum (SR) isolated from 6-, 15- and 26-month-old rats. Oxidative stress was generated in vitro by exposing SR vesicles to 0.1 mmol/l FeSO4/EDTA + 1 mmol/l H2O2 at 37 °C for 60 min. In all groups, oxidative stress was associated with decreased membrane surface hydrophobicity, as detected by 1-anilino-8-naphthalenesulfonate as a probe. Structural changes in SR membranes were accompanied by degradation of tryptophan and significant accumulation of protein dityrosines, protein conjugates with lipid peroxidation products, conjugated dienes and thiobarbituric acid reactive substances. The sensitivity to oxidative damage was most pronounced in SR of 26-month-old rat. Our results indicate that aging and oxidative stress are associated with accumulation of oxidatively damaged proteins and lipids and these changes could contribute to cardiovascular injury., E. Babušíková, M. Jeseňák, D. Dobrota, N. Tribulová, P. Kaplán., and Obsahuje bibliografii a bibliografické odkazy
The growth of the prostate gland is androgen-dependent. Testosterone is converted to the most potent dihydrotestosterone (DHT) by 5α-reductase within the prostate. Androgen interacts with androgen receptors (AR) to regulate normal growth of the prostate and has also been implicated in both the progression of benign prostate hyperplasia and prostate cancer. This study was conducted to compare the mRNA expression of AR and 5α-reductase by the prostate gland from three age categories: immature, young-mature and old dogs. Quantitative gene expression was assessed by the real-time PCR and the results were expressed as a relative mRNA expression of the target gene. This study revealed that there was no significant difference in the mRNA expression of the AR gene by the prostate gland of immature, young and old dogs. In contrast, there is a highly significant (P<0.001) down-regulation in 5α-reductase gene by the prostate of young and old dogs as compared with immature dogs. However, there is no significant difference in mRNA expression of the 5α-reductase gene by the prostate gland from young and old dogs. This differential expression of AR and 5α-reductase genes, which are involved in the regulation of androgen effect on prostate gland, might reflect an age-dependent growth requirement of the gland for androgens., F. Shidaifat., and Obsahuje seznam literatury
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control., D. Abrahamová, F. Hlavačka., and Obsahuje bibliografii a bibliografické odkazy
Vascular aging is associated with both structural and functional changes that can take place at the level of the endothelium, vascular smooth muscle cells and the extracellular matrix of blood vessels. With regard to the endothelium, reduced vasodilatation in response to agonists occurs in large conduit arteries as well as in resistance arteries with aging. Reviews concerning the different hypotheses that may account for this endothelial dysfunction have pointed out alterations in the equilibrium between endothelium-derived relaxing and constricting factors. Thus, a decreased vasorelaxation due to nitric oxide and, in some arteries, endothelium-derived hyperpolarizing factor as well as an increased vasoconstriction mediated by cyclooxygenase products such as thromboxane A2 are likely to occur in age-induced impairment of endothelial vasodilatation. Furthermore, enhanced oxidative stress plays a critical role in the deleterious effect of aging on the endothelium by means of nitric oxide breakdown due to reactive oxygen species. The relative contribution of the above phenomenon in age-related endothelial dysfunction is highly dependent on the species and type of vascular bed., R. L. Matz, C. Schott, J. C. Stoclet, R. Andriantsitohaina., and Obsahuje bibliografii
Hypertension-induced myocardial metabolic, structural and electrophysiological remodeling deteriorates with aging and contributes to both heart failure and occurrence of malignant arrhythmias. It has been shown in clinical trials that n-3 polyunsaturated fatty acids (n-3 PUFA) reduce the incidence of cardiovascular diseases and sudden cardiac death. We investigated the cardioprotective effects of n-3 PUFA in aged spontaneously hypertensive rats (SHR) and possible cellular mechanisms involved. Male and female 14-month-old SHR were fed with n-3 PUFA (Vesteralens, Norway, 20 mg/day for two months) and compared with untreated SHR. Results showed that n-3 PUFA supplementation led to 1) significant decline of blood pressure; 2) suppression of inducible ventricular fibrillation (VF) by 57 % (male) and 67 % (female) , although the arrhythmogenic substrates, like fibrosis, hypertrophy and abnormal gap junctions distribution were not eliminated; 3) preservation of the cardiomyocytes and the inte grity of their junctions; 4) enhancement of energetic metabolism enzyme activity; 5) augmentation of capillary density associated with increased alkaline phosphatase and decreased dipeptidyl peptidase-4 (DPP4) activity and 6/ increase in gap junction channel connexin-43 expression. Thus, aged male as well as female SHR benefit from n-3 PUFA supplementation that results in decrease in VF susceptibility, partly due to an improvement of myocardial metabolic state, cardiomyocyte and cell-to-cell junctions integrity and Cx43 up-regulation., M. Mitašíková, S. Šmidová, A. Mascaliová, V. Knezl, K. Dlugošová, Ľ. Okruhlicová, P. Weismann, N. Tribulová., and Obsahuje bibliografii a bibliografické odkazy
Irreversible moisture expansion of specimens made from porous ceramics of historical fired tiles is analysed here. Irreversible moisture expansion values, which reflect the rate of body ageing, were determined by heating at a temperature of 650 °C for 20 minutes and by repeated dilatometric measurement until a te mperature of 700 °C. To evaluate body ageing due to moisture expansion, it is necessary to specify the non-crystalline phase content. The causative factors influencing body ageing can be determined on bodies that have comparable non-crystalline phase content and are of similar chemical and mineralogical composition. Sufficient data set may facilitate a roughestimate of the age of historical ceramics., Vladimír Hanykýř, Alexandra Koužková, Petr Bouška and Miroslav Vokáč., and Obsahuje bibliografické odkazy
Mechanisms underlying atrial fibrillation (AF), the most common cardiac arrhythmia, particularly in aged population, are not fully elucidated. We have previously shown an increased propensity of old guinea pigs (GPs) heart to inducible AF when comparing to young animals. This study aimed to verify our hypothesis that susceptibility of aged heart to AF may be attributed to abnormalities in myocardial connexin-43 (Cx43) and extracellular matrix that affect cardiac electrical properties. Experiments were conducted on male and female 4-week-old and 24-week-old GPs. Atrial tissue was processed for analysis of Cx43 topology using immunohistochemistry, expression of Cx43 protein using immunobloting, and expression of mRNA of Cx43 and extracellular matrix metalloproteinase-2 (MMP-2) using real time PCR. Immunohistochemistry revealed uniform Cx43 distribution predominantly on lateral sides of the cardiomyocytes of young male and female GP atria. In contrast, non-uniform distribution, mislocalization and reduced immunolabeling of Cx43 were detected in atria of old GPs. In parallel, the atrial tissue levels of Cx43 mRNA were significantly decreased, while mRNA expression of MMP-2 was significantly increased in old versus young GPs. The changes were more pronounced in old GPs males comparing to females. Findings indicate that age-related down-regulation of atrial Cx43 and up-regulation of MMP-2 as well as disordered Cx43 distribution can facilitate development of AF in old guinea pig hearts., V. Nagibin, T. Egan Benova, C. Viczenczova, B. Szeiffova Bacova, I. Dovinova, M. Barancik, N. Tribulova., and Obsahuje bibliografii
Konečné produkty pokročilé glykace (advanced glycation end products – AGEs) hrají významnou roli v patogenezi řady chronických onemocnění a jejich komplikací, především diabetických komplikací, aterosklerózy, komplikací chronických onemocnění ledvin a neurodegenerativních onemocnění. Tyto látky vznikají neenzymatickou glykací a jejich tvorba je potencována vlivem karbonylového stresu. AGEs tvoří heterogenní skupinu látek a patří mezi ně např. karboxymetyllyzin, pentozin, metylglyoxallyzin dimer, vesperlyzin, imidazolony a další. AGEs jednak modifikují proteiny a mění jejich fyzikální a chemické vlastnosti, jednak mají účinky zprostředkované přes receptory, z nichž nejznámější, ale ne jediný, je receptor RAGE (receptor pro konečné produkty pokročilé glykace). RAGE je receptor multiligandový, váže také HMGB1 (high mobility group box protein 1), S100 proteiny či amyloidové fibrily. Vazba ligand na tento receptor má za následek aktivaci řady signálních cest včetně indukce oxidačního stresu a aktivace nukleárního faktoru κB a následnou prozánětlivou odpověď v závislosti na buněčném typu. AGEs a RAGE se spolu s dalšími mechanizmy – hexosaminovou cestou, polyolovou cestou, poruchou metabolizmu lipidů, aktivací proteinkinázy C, oxidačním stresem a zánětlivou reakcí spoluúčastní v patogenezi diabetických komplikací. Terapeuticky je možné snižovat endogenní tvorbu AGEs, ovlivnit přísun AGEs do organizmu stravou a jejich absorpci ve střevě či stimulovat jejich degradaci. Klíčová slova: AGEs – diabetes mellitus – karbonylový stres – konečné produkty pokročilé glykace – oxidační stres – RAGE – receptor pro AGEs – sRAGE – zánět, Advanced glycation end products (AGEs) play an important role in the pathogenesis of chronic diseases and their complications, especially diabetic complications, atherosclerosis, complications of chronic kidney diseases and neurodegenerative diseases. These substances are formed via non-enzymatic glycation and their formation is potentiated in case of carbonyl stress. AGEs are represented by a heterogeneous group of compounds, e.g. carboxymethyllysine, pentosine, methylglyoxallysin dimer, vesperlysine, imidazolones etc. AGEs can modify proteins and so change their physical and chemical properties and can act also via specific receptors, among them RAGE (receptor for advanced glycation end products) is the best known but not the unique one. RAGE is a multiligand receptor capable to bind also HMGB1 (high mobility group box protein 1), S100 proteins or amyloid fibrils. RAGE – ligand interactions results to activation of a variety of signaling pathways including oxidative stress and activation of nuclear factor κB and subsequent proinflammatory response depending on the cell type. AGEs and RAGE together with further mechanisms – hexosamine pathway, polyol pathway, lipid metabolism disorder, activation of proteinkinase C, oxidative stress and inflammatory reaction take part in the pathogenesis of diabetic complications. Terapeuticaly it is possible to decrease endogenous formation of AGEs, influence the AGEs intake to the organism and their absorption in the intestine or stimulate their degradation. Key words: AGEs – advanced glycation end-products – carbonyl stress – diabetes mellitus – inflammation – oxidative stress – RAGE – receptor for AGEs – sRAGE, and Marta Kalousová, Tomáš Zima