Říká se, že jedním ze znaků správné fyzikální teorie je její krása. Máme-li na mysli estetičnost matematickou, patří variační počet k matematickým metodám, které naplňují tento požadavek vrchovatě. Je také pravda, že správné (zkušeností a experimentem prověřené) fyzikální teorie bývají variační, tj. odvoditelné z variačního principu: Klasická mechanika, relativistická mechanika, kvantová mechanika, klasická elektrodynamika... Na zcela elementární úrovni předkládáme základní myšlenku a klasické postupy variačního počtu, s ukázkami použití v geometrii a fyzice. Zaměříme se pouze na variační princip prvního řádu, s důrazem na mechaniku, kde na rozdíl od teorie pole závisí řešené úlohy pouze na jedné nezávisle proměnné, ve fyzice obvykle na čase., It is said that one of the characteristic features of physical theories is their beauty. Having in mind the "mathematical aesthetic appearance" one can say that the calculus of variations highly fulfils this requirement! It is also well known that correct physical theories (those verified experimentally), are often variational, i.e. based on a variational principle: classical mechanics, relativistic mechanics, quantum mechanics, classical electrodynamics, etc. We present, at a very basic level, the fundamental ideas and classical approaches of the calculus of variations, including examples of their use in geometry and physics. We focus on the first order variational principle, emphasizing mechanics, because contrary to field theories, the variational problems in mechanics depend on one independent variable only (usually time in physics)., Jana Musilová, Pavla Musilová., and Obsahuje bibliografii
Variations in leaf gas-exchange characteristics, leaf pigment content, and other important leaf traits were investigated in seven wild Oryza species, five hybrids, and five improved varieties. The significant variations were observed in photosynthetic pigment contents amongst different species of Oryza. The mean chlorophyll (Chl) content was higher in O. sativa (varieties and hybrids), while O. eichengeri showed the lowest Chl content. The mean carotenoid (Car) content in O. sativa (varieties and hybrids) was higher than in other wild rice species. O. eichengeri and O. barthii had significantly lower Car contents than other rice species. Significant differences were noticed in the rate of photosynthesis (PN), stomatal conductance (gs), transpiration rate (E), internal CO2 concentration (Ci), specific leaf mass (SLM), and leaf thickness amongst different Oryza species. The mean PN was the highest in O. nivara followed by O. eichengeri. The mean PN was the lowest in O. glumaepatula, which was lower than that of cultivated varieties and hybrids of O. sativa. High rates of photosynthesis were observed in O. nivara (ACC. No. CR 100097), O. rufipogon (ACC.No. CR 100267), and O. nivara (ACC.No. CR 100008). The O. nivara and O. rufipogon genotypes with high PN might be used in rice improvement programmes for an increase of leaf photosynthesis in rice. Multiple correlations performed between different gas-exchange characteristics and other physiological traits revealed that the rate of photosynthesis was not dependent on the leaf pigment content or the leaf thickness. A strong positive correlation between PN and the PN/Ci ratio, which represents the carboxylation efficiency, indicated that the observed variation in PN was not based on pigment content or other leaf traits. and T. V. Kiran ... [et al.].
Three genetically related Spathiphyllum cultivars, Claudia, Double Take, and Petite with similar initial sizes and biomass, were grown in a shaded greenhouse and fertilized with a constant supply of nitrogen at 200 g m-3 using an ebb-and-flow fertigation system. Seven months later, Claudia and Double Take had plant sizes and biomasses significantly greater than Petite. Stomatal conductances of Claudia and Double Take were 30 % greater, thus net photosynthetic rates (PN) were significantly higher than in Petite. In addition, the leaf areas (LA) of Claudia and Double Take were 60 % larger than of Petite. Since PN was expressed per leaf surface area, the greater the LA was, the more CO2 was fixed. Thus, the differences in plant size and biomass production of Claudia and Double Take compared to Petite are attributed to high PN and increased LA. and Qibing Wang, Jianjun Chen.
Among four mulberry (Morus alba L.) cultivars (K-2, MR-2, BC2-59, and S-13), highest net photosynthetic rate (PN) was observed in BC2-59 while the lowest rates were recorded with K-2. Significant differences among the four cultivars were found in leaf area, biomass production, activities of ribulose-1,5-bisphosphate carboxylase and sucrose phosphate synthase, and glucose and sucrose contents. The PN and the activities of photosynthetic enzymes in the four cultivars were significantly correlated with the growth and biomass production measured as leaf yield, total shoot mass, and aerial plant biomass. and K. V. Chaitanya ... [et al.].
Leaf traits have long been recognized as influential factors in the acquisition and processing of resources by plants. However, there is less knowledge of between-species variations in seasonal changes in leaf traits and trait interrelationships. Therefore, we examined variations in leaf area (LA), dry biomass (DM), specific leaf area (SLA), and leaf gas-exchange parameters in one non-native and seven native tree species under field environmental conditions, in a karst area in China subjected to desertification. Measurements were taken three times during the growing season. The results show that the seven native trees had higher LA, DM, and water-use efficiency (WUE) than the non-native Cinnamomum camphora. In contrast, all the native tree species except Ligustrum lucidum had lower photosynthetic rates (PN) than the non-native species. In all species, the relationship between LA and DM was less variable than the relationship between SLA and LA. However, leaves of the non-native C. camphora and native species Sterculia lanceolata, Cleidiocarpon cavalerei and Cyclobalanopsis glauca were highly sensitive to seasonal conditions, leaves of Sapindus mukorossi and Ligustrum lucidum were less sensitive to seasonal changes, and leaves of Syzygium cumini and Cephalomappa sinensis were insensitive. An understanding of leaf traits will aid the selection of suitable species for land restoration. and L.-Y. Wei ... [et al.].
An experimental investigations on the effect of convergence of stream lines on the Darcy and non-Darcy parameters for different radial lines for different ratios of the radii was studied in a convergent flow permeameter. The applicability of a resistance law relating friction factor and Reynolds number using the square root of intrinsic permeability as the characteristic length is examined for flow with converging boundaries. In this study, crushed rock of size 3.25 mm and 4.73 mm were used as media and water as fluid, to develop curves relating friction factor and Reynolds number for different radial lines with different ratios of the radii. and V konvergentnom permeametri sme experimentálne skúmali vplyv konvergencie prúdnic na Darcyovské a nedarcyovské charakteristiky prúdenia. Pre prúdenie v pórovitom prostredí s konvergujúcimi hranicami sme zisťovali použiteľnosť zákona odporu, ktorý dáva do súvislosti súčiniteľ trenia a Reynoldsovo číslo, používajúc druhú odmocninu vnútornej priepustnosti ako charakteristickú dĺžku. Pre získanie kriviek závislostí medzi súčiniteľom trenia a Reynoldsovým číslom pre rôzne hydraulické polomery a rôzne pomery hydraulických polomerov sme použili drvenú horninu s veľkosťou zŕn 3,25 mm a 4,73 mm, tekutinou bola voda.
Variations in leaf gas-exchange characteristics, PSII activity, leaf pigments, and tuber yield were investigated in seven wild and one cultivated species of Dioscorea from Koraput, India, in order to find out their overall adaptability to the environment. The leaf photosynthetic rate, transpiration, stomatal conductance, water-use efficiency, carboxylation efficiency, and photosynthetic pigments were significantly higher in some wild species compared to the cultivated species. In addition, some wild species showed better photochemical efficiency of PSII, photochemical quenching, and electron transport rate in comparison to cultivated one. Furthermore, leaf dry matter accumulation and tuber yield was also higher in some wild species compared to the cultivated species. Taken together, the wild species, such as D. oppositifolia, D. hamiltonii, and D. pubera, showed the superior photosynthetic efficiency compared to the cultivated D. alata and they could be used for future crop improvement programs., B. Padhan, D. Panda., and Obsahuje bibliografii
Carbon and water fluxes in a semiarid shrubland ecosystem located in the southeast of Spain (province of Almería) were measured continuously over one year using the eddy covariance technique. We examined the influence of environmental variables on daytime (photosynthetically active photons, FP >10 µmol m-2 s-1) ecosystem gas exchange and tested the ability of an empirical eco-physiological model based on FP to estimate carbon fluxes over the whole year. The daytime ecosystem fluxes showed strong seasonality. During two solstitial periods, summer with warm temperatures (>15 °C) and sufficient soil moisture (>10 % vol.) and winter with mild temperatures (>5 °C) and high soil moisture contents (>15 % vol.), the photosynthetic rate was higher than the daytime respiration rate and mean daytime CO2 fluxes were ca. -1.75 and -0.60 µmol m-2 s-1, respectively. Daytime evapotranspiration fluxes averaged ca. 2.20 and 0.24 mmol m-2 s-1, respectively. By contrast, in summer and early autumn with warm daytime temperatures (>10 °C) and dry soil (<10 % vol.), and also in mid-winter with near-freezing daytime temperatures the shrubland behaved as a net carbon source (mean daytime CO2 release of ca. 0.60 and 0.20 µmol m-2 s-1, respectively). Furthermore, the comparison of water and carbon fluxes over a week in June 2004 and June 2005 suggests that the timing-rather than amount-of spring rainfall may be crucial in determining growing season water and carbon exchange. Due to strongly limiting environmental variables other than FP, the model applied here failed to describe daytime carbon exchange only as a function of FP and could not be used over most of the year to fill gaps in the data. and P. Serrano-Ortiz ... [et al.].
Leaf respiration (R L) of evergreen species co-occurring in the Mediterranean maquis developing along the Latium coast was analyzed. The results on the whole showed that the considered evergreen species had the same R L trend during the year, with the lowest rates [0.83 ± 0.43 μmol(CO2) m-2 s-1, mean value of the considered species] in winter, in response to low air temperatures. Higher R L were reached in spring [2.44 ± 1.00 μmol(CO2) m-2 s-1, mean value] during the favorable period, and in summer [3.17 ± 0.89 μmol(CO2) m-2 s-1] during drought. The results of the regression analysis showed that 42% of R L variations depended on mean air temperature and 13% on total monthly rainfall. Among the considered species, C. incanus, was characterized by the highest R L in drought [4.93 ± 0.27 μmol(CO2) m-2 s-1], low leaf water potential at predawn (Ψpd = -1.08 ± 0.18 MPa) and midday (Ψmd = -2.75 ± 0.11 MPa) and low relative water content at predawn (RWCpd = 80.5 ± 3.4%) and midday (RWCmd = 67.1 ± 4.6%). Compared to C. incanus, the sclerophyllous species (Q. ilex, P. latifolia, P. lentiscus, A. unedo) and the liana (S. aspera), had lower R L [2.72 ± 0.66 μmol(CO2) m-2 s-1, mean value of the considered species], higher RWCpd (91.8 ± 1.8%), RWCmd (82.4 ± 3.2%), Ψpd (-0.65 ± 0.28 MPa) and Ψmd (-2.85 ± 1.20 MPa) in drought. The narrow-leaved species (E. multiflora, R. officinalis, and E. arborea) were in the middle. The coefficients, proportional to the respiration increase for each 10°C rise (Q10), ranging from 1.49 (E. arborea) to 1.98 (A. unedo) were indicative of the different sensitivities of the considered species to air temperature variation., R. Catoni, L. Varone, and L. Gratani., and Obsahuje bibliografii
Young leaves of tropical trees frequently appear red in color, with the redness disappearing as the leaves mature. During leaf expansion, plants may employ photoprotective mechanisms to cope with high light intensities; however, the variations in anthocyanin contents, nonphotochemical quenching (NPQ), and photorespiration during leaf expansion are poorly understood. Here, we investigated pigment contents, gas exchange, and chlorophyll (Chl) fluorescence in Woodfordia fruticosa leaves during their expansion. Young red leaves had significantly lower Chl content than that of expanding or mature leaves, but they accumulated significantly higher anthocyanins and dissipated more excited light energy through NPQ. As the leaves matured, net photosynthetic rate, total electron flow through PSII, and electron flow for
ribulose-1,5-bisphosphate oxygenation gradually increased. Our results provided evidence that photorespiration is of fundamental importance in regulating the photosynthetic electron flow and CO2 assimilation during leaf expansion., S.-B. Zhang, J.-L. Zhang., and Obsahuje seznam literatury