We aimed to compare the effects of chronic and acute administration of structurally different antihypertensives, diuretics - indapamide and hydrochlorothiazide, ACE inhibitor - captopril and indapamide+captopril combination on endothelium-dependent relaxation of femoral artery isolated from nitric oxide (NO)-deficient rats. In the chronic experiment, femoral artery was isolated from Wistar rats receiving L-NAME (40 mg/kg/day) solely or with indapamide (1 mg/kg/day), hydrochlorothiazide (10 mg/kg/day), captopril (10 mg/kg/day), and indapamide+captopril combination for seven weeks. In the acute in vitro experiment, the incubation medium with femoral artery isolated from L-NAMEhypertensive rats was supplemented with investigated antihypertensives in the same concentration 10-4 mol/l. Interestingly, chronic L-NAME treatment did not cause a reduction of vasorelaxation. Indapamide+captopril elevated relaxation above the control level and completely prevented blood pressure increase induced by L-NAME. Acute incubation with captopril only or indapamide+captopril improved relaxation of femoral artery isolated from L-NAMEhypertensive rats, while the incubation with all antihypertensives increased vasorelaxation of femoral artery isolated from control Wistar rats. In conclusion, NO might be involved in the indapamide- and hydrochlorothiazide-induced improvement of vasorelaxation, while different vasorelaxing factors (prostacyclin, EDHF) contribute to the captoprilinduced improvement of vasorelaxation. During the chronic treatment additive and synergic effects of indapamide and captopril may contribute to the prevention of hypertension and increase of vasorelaxation., M. Sládková, S. Kojšová, L. Jendeková, O. Pecháňová., and Obsahuje bibliografii
The mechanisms and myocardial alterations associated with NO-deficient hypertension are still far from clear. The aim of the present study was to focus on the enzyme histochemical and subcellular changes in the heart of L-NAME treated rats, as well as to examine the influence of captopril treatment. Wistar rats were administered either L-NAME (40 mg/kg/day) alone or together with captopril (100 mg/kg/day) for a period of 4 weeks. A significant increase of blood pressure confirmed the reliability of the model. The results showed that long-lasting L-NAME administration was accompanied by a decrease of endothelial NO-synthase activity and by a significant local decrease of the following enzyme activities: capillary-related alkaline phosphatase, 5’-nucleotidase and ATPase (but not dipeptidyl peptidase IV) and cardiomyocyte-related glycogen phosphorylase, succinic dehydrogenase, ß-hydroxybutyrate dehydrogenase and ATPases. No activity of these enzymes was found in the scar, whereas a marked increase of alkaline phosphatase and dipeptidyl peptidase IV activities was found in the foci of fibrotization. Histochemical changes correlated with subcellular changes, which were characterized by 1) apparent fibroblast activation associated with interstitial/perivascular fibrosis, 2) heterogeneous population of the normal, hypertrophic and injured cardiomyocytes, 3) enhancement of the atrial granules and their translocation into the sarcolemma, and 4) impairment of capillaries as well as by induction of angiogenesis. Similar alterations were also found in the heart of captopril co-treated rats, despite of the significant suppression of blood pressure. The results indicate that NO-deficient hypertension is accompanied by metabolic disturbances and ultrastructural alterations of the heart and these changes are probably not induced by the renin-angiotensin system only., N. Tribulová, Ľ. Okruhlicová, I. Bernátová, O. Pecháňová., and Obsahuje bibliografii
Young castrated male goats (n = 8) were used to investigate the effect of long-term treatment with recombinant methionyl bovine somatotropin in a sustained release vehicle (bST; 100 mg at seven-day intervals in a 147-day experiment) and chronic culture (24 h) of omental adipose tissue in the presence of various hormones on lipogenic responses to catecholamines during acute incubation (2 h) in a sodium acetate supplemented glucose-free buffer. The rate of fatty acid synthesis in freshly-prepared adipose explants was low and did not differ from those cultured in the absence of hormones for 24 h. Hormonal combination of insulin (17 nmol.l-1) plus cortisol (138 nmol.l-1) or insulin plus recombinant enterokinase linker bST (4.5 nmol.l-1) increased lipogenesis (P<0.05). Further addition of bST or cortisol decreased lipogenesis significantly (P<0.05) in the controls but not significantly in bST-treated animals. Cultured explants from either control or bST-treated animals showed significant inhibition of lipogenesis by both norepinephrine (10 m mol.l-1) and isoprenaline (10 m mol.l-1). BST treatment in vivo did not increase the responsiveness of cultured explants to norepinephrine in vitro, however, the responsiveness to isoprenaline(inhibition of lipogenesis) was greater in bST-treated animals than in the controls., J. Škarda., and Obsahuje bibliografii
NG-nitro-L-arginine methyl ester (L-NAME) is a non-specific nitric oxide (NO) synthase inhibitor, commonly used for the induction of NO-deficient hypertension. The aim of this study was to investigate the effect of chronic low-dose administration of L-NAME on NO production, vascular function and structure of the heart and selected arteries of rats. Adult male Wistar rats were treated with L-NAME in the dose of approximately 1.5 mg/kg/day in drinking water for 8 weeks. Basal blood pressure (BP) of rats (determined by tail-cuff) was 112±3 mm Hg. The low-dose administration of L-NAME significantly elevated BP measured on the third and sixth week of treatment vs. controls by approximately 9 % and 12 %, respectively. After this period, BP of L-NAME-treated rats returned to the control values. The relative left ventricular mass, heart fibrosis and collagen III/collagen I ratio were not affected by L-NAME. Similarly, there were no alterations in the cross-sectional area and wall thickness/diameter ratio of the aorta and the femoral artery of LNAME- treated rats. NO synthase activity (determined by conversion of [3H]-L-arginine to [3H]-L-citrulline) was not altered in the hypothalamus of L-NAME-treated rats. Interestingly, chronic low-dose L-NAME treatment significantly elevated NO synthase activity in the left ventricle and aorta, increased endothelium-dependent acetylcholine-induced vasorelaxation and reduced serotonin-induced vasoconstriction of the femoral artery. The data suggest that chronic lowdose L-NAME treatment can increase NO production and vasorelaxation in normotensive rats without negative structural changes in the cardiovascular system., I. Bernátová, J. Kopincová, A. Púzserová, P. Janega, P. Babál., and Obsahuje bibliografii
Stress serves as a risk factor in the etiology of hypertension. The present study was designed to decipher the effect and mechanism of chronic stress on the progression of pressure overload-induced cardiac dysfunction. We used abdominal aortic constriction (AAC) to induce pressure overload with or without chronic restraint stress to establish the animal models. Echocardiographic analysis showed pressure overload-induced cardiac dysfunction was worsened by chronic stress. Compared with the AAC rats, there is a significant increase in cardiac hypertrophy, injury, apoptosis and fibrosis of the AAC + stress rats. Furthermore, we found the secretion of norepinephrine (NE) increased after the AAC operation, while the level of NE was higher in the AAC + stress group. Cardiomyocytes and cardiac fibroblasts isolated from neonatal rats were cultured and separately treated with 1, 10, 100 μM NE. The higher concentration NE induced more cardiomyocytes hypertrophy and apoptosis, cardiac fibroblasts proliferation and collagen expression. These results revealed that high level of NE-induced cardiomyocytes hypertrophy and apoptosis, cardiac fibroblasts proliferation and collagen expression further contributes to the effect of chronic stress on acceleration of pressure overloadinduced cardiac dysfunction., W. Liu, X. Wang, Z. Mei, J. Gong, X. Gao, Y. Zhao, J. Ma, F. Xie, L. Qian., and Obsahuje bibliografii
Physiologically, leptin concentration is controlled by circadian rhythm. However, in critically ill patients, circadian rhythm is disrupted. Thus we hypothesized that circadian leptin concentration changes are not preserved in critically ill patients. Ten consecutive critically ill heart failure patients with the clinical indication for mechanical ventilation and sedation were included into our study. Plasma leptin concentration was measured every 4 h during the first day (0-24 h) and during the third day (48-72 h) after admission. During the first day, there were significant leptin concentration changes (ANOVA, p<0.05), characterized by an increase in concentration by 44 % (16-58 %); p=0.02 around noon (10 am-2 pm) and then a decrease in concentration by 7 % (1-27 %); p=0.04 in the morning (2 am-6 am). In contrast, there was no significant change in leptin concentration during the third day after admission (ANOVA, p=0.79). Based on our preliminary results, we concluded that in critically ill heart failure patients, the circadian rhythm of plasma leptin concentration seems to be preserved during the first but not during the third day after admission., I. Cundrle Jr., P. Suk, V. Sramek, Z. Lacinova, M. Haluzik., and Obsahuje bibliografii
The circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of the molecular clockwork is summarized. The central SCN clock is viewed as a complex structure composed of a web of mutually synchronized individual oscillators. The importance of development of both the intracellular molecular clockwork as well as intercellular coupling for development of the formal properties of the circadian SCN clock is also highlighted. Recently, data has accumulated to demonstrate that synchronized molecular oscillations in the central and peripheral clocks develop gradually during ontogenesis and development extends into postnatal period. Synchronized molecular oscillations develop earlier in the SCN than in the peripheral clocks. A hypothesis is suggested that the immature clocks might be first driven by external entraining cues, and therefore, serve as “slave” oscillators. During ontogenesis, the clocks may gradually develop a complete set of molecular interlocked oscillations, i.e., the molecular clockwork, and become self-sustained clocks., A. Sumová, Z. Bendová, M. Sládek, R. El-Hennamy, K. Matějů, L. Polidarová, S. Sosniyenko, H. Illnerová., and Obsahuje bibliografii a bibliografické odkazy
Circulating lipopolysaccharide-binding protein (LBP), a metabolic endotoxemia marker, was identified as an independent predictor of atherosclerosis. Although increases in carotid intima-media thickness (CIMT) were repeatedly reported in obstructive sleep apnea (OSA), neither the role of OSA in metabolic endotoxemia nor of LBP in early atherosclerosis were explored in patients with OSA. At a tertiary university hospital we investigated the relationships between OSA, LBP and CIMT in 117 men who underwent full polysomnography and CIMT assessment by B-mode ultrasound. Circulating LBP concentrations and average CIMT increased from patients without OSA to those with mild-moderate and severe OSA (from 32.1±10.3 to 32.3±10.9 to 38.1±10.3 μg.ml-1, p=0.015; from 0.52±0.09 to 0.58±0.06 to 0.62±0.10 mm, p=0.004, respectively). Oxygen desaturation index (ODI) was a predictor of serum LBP levels independent of age, waist-to-hip ratio (WHR), smoking, hypertension, HDL cholesterol, triglycerides and fasting glucose [p (ANOVA)=0.002, r 2=0.154], with no independent effect of the ODI*WHR interaction term on LBP. Furthermore, serum LBP predicted CIMT independently of known risk factors of atherosclerosis including obesity (p<0.001, r 2=0.321). Our results suggest that OSA severity contributes to metabolic endotoxemia in patients with OSA independently of obesity, and that LBP might represent a contributing factor promoting early atherosclerosis in such patients., I. Trojová, M. Kozarová, D. Petrasová, Z. Malachovská, I. Paranicová, P. Joppa, R. Tkacová., and Seznam literatury
Selective serotonine reuptake inhibitors (SSRI) are believed to be less dangerous in the treatment of depressive disorder in comparison with tricyclic antidepressants (TCA) due to their relative lack of cardiotoxicity. Thus, we investigated the effect of citalopram (SSRI) on membrane electrophysiology in rat cardiomyocytes in tissue culture. The results were compared with those from amitriptyline (TCA). The whole-cell configuration patch-clamp technique was used. Both citalopram and amitriptyline exhibited the concentration-dependent inhibition of the L-type calcium channel current (ICa). Citalopram in concentrations of 3 mM and 10 mM inhibited peak calcium current by 2.7 % and 8 %, respectively. We demonstrated the same potency of citalopram and amitriptyline to inhibit ICa. These observations led us to conclude that citalopram and amitriptyline are drugs, which exhibit a similar potency for causing concentration-dependent inhibition of ICa., J. Hamplová-Peichlová, J. Krůšek, I. Paclt, J. Slavíček, V. Lisá, F. Vyskočil., and Obsahuje bibliografii
The effect of β3-adrenoceptor (β3-AR) agonists on adipocytes treated or not tr eated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [ 32 P]orthophosphate, we found that treatment with the selective β3-AR agonist CL316243 (CL; 1 μ M) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P3) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine -degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 μ g/ml), or wortmannin (WT, a PI -kinase inhibitor; 3 μ M). The results showed that CL induced PI(3,4,5)P 3 production in intact adipocytes and that this production was affected by signaling modulators. Taken together, our findings indicate that CL produces PI(3,4,5)P3 in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of β3-AR agonists on adipocytes., Y. Ohsaka, Y. Nomura., and Obsahuje bibliografii