We studied the relationship between blood pressure (BP), body mass index (BMI, kg/m2) and baroreflex sensitivity (BRS, ms/mmHg) in adolescents. We examined 34 subjects aged 16.2±2.4 years who had repeatedly high causal BP (H) and 52 controls (C) aged 16.4±2.2 years. Forty-four C and 22 H were of normal weight (BMI between 19-23.9), and 8 C and 12 H were overweight (BMI between 24-30). Systolic BP was recorded beat-to-beat for 5 min (Finapres, controlled breathing 0.33 Hz). BRS was determined by the cross-spectral method. The predicting power of BMI and BRS for hypertension was evaluated by sensitivity, specificity, and receiver operating curve (ROC - plot of sensitivity versus specificity). H compared with C had lower BRS (p<0.01) and higher BMI (p<0.05). Multiple logistic regression analysis (p<0.001) revealed that a decreased BRS (p<0.05) and an increased BMI (p<0.01) were independently associated with an increased risk of hypertension. No correlation between BMI and BRS was found either in H or in C. Following optimal critical values by ROC, the sensitivity, specificity and area under ROC were determined for: BMI - 22.2 kg/m2, 61.8 %, 69.2 %, 66.0 %; BRS - 7.1 ms/mmHg, 67.7 %, 69.2 %, 70.0 %; BMI and BRS - 0.439 a.u., 73.5 %, 82.7 %, and 77.3 %. Decreased BRS and overweight were found to be independent risk factors for hypertension., K. Krontorádová, N. Honzíková, B. Fišer, Z. Nováková, E. Závodná, H. Hrstková, P. Honzík., and Obsahuje bibliografii a bibliografické odkazy
Paraoxonase 1 (PON1), an antioxidant enzyme closely associated with HDL (high-density lipoproteins), preserves LDL (low-density lipoproteins) against oxidation. Less protection may be therefore supposed by decreased PON1 activity. This study was undertaken to investigate the association of PON1 gene polymorphisms with diabetic angiopathy and to evaluate the relationship of these polymorphisms with PON1 activity. Total of 86 Type 1 (T1DM) and 246 Type 2 (T2DM) diabetic patients together with 110 healthy subjects were examined. DNA isolated from leukocytes was amplified with polymerase chain reaction (PCR) followed by restriction enzyme digestion. The products were analyzed for L55M and Q192R polymorphisms in coding region and for –107 C/T and –907 G/C in promotor sequence of PON1. Serum enzyme activity was measured spectrophotometrically. Significant differences were found between T1DM or T2DM and control persons in L55M polymorphism (allele M more frequent in T1DM and T2DM vs. controls, p<0.05) and Q192R polymorphism (R allele less frequent in T1DM and T2DM vs. controls, p<0.01) of the PON1 gene. Serum PON1 activity was significantly decreased in T1DM (110±68 nmol/ml/min) and T2DM patients (118±69 nmol/ml/min) compared to the control persons (203±58 nmol/ml/min), both p<0.01. The presence of MM and QQ genotypes was accompanied by lower PON1 activity than of LL and RR genotypes (p<0.05), respectively. Better diabetes control was found in patients with LL than with MM genotypes and similarly in RR genotype than QQ genotype with p<0.05. Significantly different allele frequencies were found in diabetic patients with macroangiopathy than in those without it (M: 0.59 vs. 0.44. R: 0.12 vs. 0.19, p<0.01). The association of PON1 polymorphisms, lower PON1 activity and poorer diabetes control found in patients with macroangiopathy further support the idea of genetic factors contributing to the development of vascular disorders in diabetes., M. Flekač, J. Škrha, K. Zídková, Z, Lacinová, J. Hilgertová., and Obsahuje bibliografii a biblografické odkazy
This review concerns the role of nitric oxide (NO) in the pathogenesis of different models of experimental hypertension (NO-deficient, genetic, salt-dependent), which are characterized by a wide range of etiology. Although the contribution of NO may vary between different models of hypertension, a unifying characteristic of these models is the presence of oxidative stress that participates in the maintenance of elevated arterial pressure and seems to be a common denominator underlying endothelial dysfunction in various forms of experimental hypertension. Besides the imbalance between the endothelial production of vasorelaxing and vasoconstricting compounds as well as the relative insufficiency of vasodilator systems to compensate augmented vasoconstrictor systems, there were found numerous structural and functional abnormalities in blood vessels and heart of hypertensive animals. The administration of antihypertensive drugs, antioxidants and NO donors is capable to attenuate blood pressure elevation and to improve morphological and functional changes of cardiovascular system in some but not all hypertensive models. The failure to correct spontaneous hypertension by NO donor administration reflects the fact that sympathetic overactivity plays a key role in this form of hypertension, while NO production in spontaneously hypertensive rats might be enhanced to compensate increased blood pressure. A special attention should be paid to the modulation of sympathetic nervous activity in central and peripheral nervous system. These results extend our knowledge on the control of the balance between NO and reactive oxygen species production and are likely to be a basis for the development of new approaches to the therapy of diseases associated with NO deficiency., J. Török., and Obsahuje bibliografii a bibliografické odkazy
Spontaneously Diabetic Torii (SDT) fatty rats, a new obese diabetic model, reportedly presented with features of non-alcoholic steatohepatitis (NASH) after 32 weeks of age. We tried to accelerate the onset of NASH in SDT fatty rats using dietary cholesterol loading and noticed changes in the blood choline level which is expected to be a NASH biomarker. Body weight and biochemical parameters were measured from 8 to 24 weeks of age. At 16, 20, 24 weeks, pathophysiological analysis of the livers were performed. Hepatic lipids, lipid peroxides, and the expression of mRNA related to triglyceride (TG) synthesis, inflammation, and fibrosis were evaluated at 24 weeks. Hepatic fibrosis was observed in SDT fatty rats fed cholesterol-enriched diets (SDT fatty-Cho) from 16 weeks. Furthermore, hepatic lipids and lipid peroxide were significantly higher in SDT fatty-Cho than SDT fatty rats fed normal diets at 24 weeks. Hepatic mRNA expression related to TG secretion decreased in SDT fatty-Cho, and the mRNA expression related to inflammation and fibrosis increased in SDT fatty-Cho at 24 weeks. Furthermore, SDT fatty-Cho presented with increased plasma choline, similar to human NASH. There were no significant changes in the effects of feeding a cholesterol-enriched diet in Sprague-Dawley rats. SDT fatty-Cho has the potential to become a valuable animal model for NASH associated with type 2 diabetes and obesity., Y. Toriniwa, M. Muramatsu, Y. Ishii, E. Riya, K. Miyajima, S. Ohshida, K. Kitatani, S. Takekoshi, T. Matsui, S. Kume, T. Yamada, T. Ohta., and Obsahuje bibliografii
The purpose of this study was to investigate plasma concentrations of cyclic guanosine monophosphate (cGMP) and atrial natriuretic peptide (ANP) during and after real and simulated space flight. Venous blood was obtained 3 min after the beginning and 2 min after the lower body negative pressure maneuver in two cosmonauts preflight (supine), inflight, and postflight (supine) and in five other subjects before, at the end, and 4 days after a 5-day head-down tilt (-6°) bed rest. In cosmonaut 1 (10 days in space), plasma cGMP fell from preflight 4.3 to 1.4 nM on flight day 6, and was 3.0 nM on the fourth day after landing. In cosmonaut 2 (438 days in space), it fell from preflight 4.9 to 0.5 nM on on flight day 3, and stayed <0.1 nM with 5, 9, and 14 months in space, as well as on the fourth day after landing. Three months after the flight his plasma cGMP was back to normal (6.3 nM). Cosmonaut 2 also displayed relatively low inflight ANP values but returned to preflight level immediately after landing. In a ground-based simulation on five other persons, supine plasma cGMP was reduced by an average of 30 % within 5 days of 6° head-down tilt bed rest. The data consistently demonstrate lowered plasma cGMP with real and simulated weightlessness, and a complete disappearance of cGMP from plasma during, and shortly after long-duration space flight., A. Rössler, V. Noskov, Z. László, V.V. Polyakow, H. G. Hinghofer-Szalkay., and Obsahuje bibliografii
Six genotypes of taro (Colocasia esculenta L. Schott) were evaluated under in vitro and in vivo polyethylene glycol (PEG-6000)-mediated osmotic stress conditions. A significant variation in growth response was observed among the taro genotypes under in vitro-induced stress conditions. In vivo results indicated a significant effect of osmotic stress on photosynthetic parameters, such as net photosynthetic rate, transpiration rate, stomatal conductance, stomatal resistance, internal CO2 concentration, carboxylation efficiency, and transpiration efficiency on the tested genotypes at the tuberization stage. Lesser variations in photosynthesis and higher accumulation of proline, phenols, and antioxidative enzymes, namely, superoxide dismutase and guaiacol peroxidase, were associated with yield maintenance under osmotic stress conditions. The genotypes DP-89, IGCOL-4, and Ramhipur showed a higher degree of tolerance towards osmotic stress with a minimum variation in the studied parameters. These genotypes could be lines of interest for intensification of breeding strategies to develop drought-tolerant plants., M. R. Sahoo, M. Dasgupta, P. C. Kole, A. Mukherjee., and Obsahuje bibliografii
Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretchinduced signaling to myocyte growth in vivo . Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart., E. Krejci, Z. Pesevski, O. Nanka, D. Sedmera., and Obsahuje bibliografii
Nitric oxide (NO) is an important endogenous neurotransmitter and mediator. It participates in regulation of physiological processes in different organ systems including airways. Therefore, it is important to clarify its role in the regulation of both airway and vascular smooth muscle, neurotransmission and neurotoxicity, mucus transport, lung development and in the surfactant production. The bioactivity of NO is highly variable and depends on many factors: the presence and activity of NO-producing enzymes, activity of competitive enzymes (e.g. arginase), the amount of substrate for the NO production, the presence of reactive oxygen species and others. All of these can change NO primary physiological role into potentially harmful. The borderline between them is very fragile and in many cases not entirely clear. For this reason, the research focuses on a comprehensive understanding of NO synthesis and its metabolic pathways, genetic polymorphisms of NO synthesizing enzymes and related effects. Research is also motivated by frequent use of exhaled NO monitoring in the clinical manifestations of respiratory diseases. The review focuses on the latest knowledge about the production and function of this mediator and understanding the basic physiological processes in the airways., M. Antosova, D. Mokra, L. Pepucha, J. Plevkova, T. Buday, M. Sterusky, A. Bencova., and Obsahuje bibliografii