Monosodium glutamate (MSG), the sodium salt of glutamate, is commonly used as a flavor enhancer in modern nutrition. Recent studies have shown th e existence of glutamate receptors on lymphocytes, thymoc ytes and thymic stromal cells. In this study, we evaluated the in vitro effect of different MSG concentr ations on rat thymocyte apoptosis and expression of two apoptosis-related proteins, Bcl-2 and Bax. Rat thymocytes, obtained from male Wistar rats, were exposed to increasing concentrations of MSG (ranging from 1 mM to 100 mM) for 24 h. Apoptosis was detected using the Annexin V-FITC/PI apoptosis detection kit and cells were analyzed using a flow cytometer. Expression of Bcl-2 and Bax proteins were determined with flow cytometry using respective monoclonal antibodies. Exposure to MSG resulted in a dose-dependent decrease in cell survival (as determined by trypan blue exclusion method). Annexin V- FITC/PI also confirmed that MSG incr eased, in a dose-dependent manner, ap optotic cell death in rat thymocyte cultures. MSG treatment induced downregulation of Bcl-2 protein, while Bax protein levels were not significantly changed. Our data showed that MSG significantly modulates thymocyte apoptosis rate in cultures. The temporal profile of Bcl-2 and Bax expression after MSG treatment suggests that downregulation of Bcl-2 protein and the resulting change of Bcl-2/Bax protein ratio may be an important event in thymocyte apoptosis triggered by MSG., V. Pavlović, S. Cekić, G. Kocić, D. Sokolović, V. Živković., and Obsahuje bibliografii a bibliografické odkazy
The effects of NaCl (200 mM) and osmotic stress generated by polyethylene glycol (PEG) on PSII maximal quantum efficiency, photosynthetic CO2/H2O gas exchange at two CO2 concentrations, content of chlorophyll, proline, and malondialdehyde were investigated in shoots of C4 xerohalophyte Haloxylon aphyllum (Chenopodiaceae). The PEG treatment induced a low water osmotic potential (-0.4 MPa) and inhibited photosynthesis (by a factor of 2) and transpiration (by a factor of 4). The NaCl treatment, at equal osmoticity conditions, reduced transpiration (by a factor of 2) and stimulated photosynthesis (by a factor of 2.5). Only the
PEG-treated plants showed osmotic stress effects, which were demonstrated by an increase in proline and malondialdehyde contents in the shoot tissue. The data indicated that the halophilic character of this species was essential for maintaining the plant water status and photosynthesis under osmoticity induced by NaCl treatment. Herewith, the presence of C4-type photosynthesis appeared to be just an auxiliary mechanism, because this xerohalophyte did not reveal the efficiency in water use typical for C4 plants under osmotic stress, in the absence of a saline substrate., Z. F. Rakhmankulova, P. Yu. Voronin, E. V. Shuyskaya, N .A. Kuznetsova, N. V. Zhukovskaya, K. N. Toderich., and Obsahuje bibliografii
Calligonum caput-medusae is known to grow well when irrigated with water containing NaCl. The aim of this study was to investigate ecophysiological responses of C. caput-medusae to different NaCl concentrations. In our study, we examined the effect of 0, 50, 100, 200, and 400 mM NaCl. Our results demonstrated that maximum seedling growth occurred at 50 mM NaCl. Photosynthetic parameters, such as the photosynthetic pigment content and gas exchange parameters, correlated with growth response. High salinity (≥ 100 mM NaCl) resulted in a significant reduction of the plant growth. Similarly, marked declines in the pigment content, maximal efficiency of PSII photochemistry, net photosynthetic rate, transpiration rate, and stomatal conductance were also detected. However, intercellular CO2 concentration showed a biphasic response, decreasing with water containing less than 200 mM NaCl and increasing with NaCl concentration up to 400 mM. Water-use efficiency and intrinsic water-use efficiency exhibited the opposite response. The reduction of photosynthesis at the high NaCl concentration could be caused by nonstomatal factors. High salinity led also to a decrease in the relative water content and water potential. Correspondingly, an accumulation of soluble sugars and proline was also observed. Na+ and
Cl- concentrations increased in all tissues and K+ concentrations were maintained high during exposure to NaCl compared with the control. High salinity caused oxidative stress, which was evidenced by high malondialdehyde and hydrogen peroxide contents. In order to cope with oxidative stress, the activity of antioxidative enzymes increased to maximum after 50 mM NaCl treatment. The data reported in this study indicate that C. caput-medusae can be utilized in mild salinity-prone environments., Y. Lu, J.-Q. Lei, F.-J. Zeng, B. Zhang, G.-J. Liu, B. Liu, X.-Y. Li., and Obsahuje bibliografii
As nitric oxide is considered a mediator of liver oxid ative metabolism during sepsis, we studied the effects of exogenous nitric oxide, produced by NO-donor, (±)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), on cell viability, urea biosynthesis and oxygen consumption in rat hepatocyte cultures. Nitric oxide release from NOR-3 was studied using 4,5-diaminofluorescein diacetate. Urea levels were measured by the spectrophotometric method. Cell viability was determined by the MTT test and trypan blue exclusion test, whereas oxygen consumption was measured by a polarographic technique. After 2 h treatment, NOR-3 induced an increase in the levels of nitric oxide. After 2 h of treatment and 24 h after the end of the treatment with NOR-3, both cell viability and urea synthesis were significantly reduced in comparison to the controls for NOR-3 concentrations equal to or greater than 50 μM. A reduction in oxygen consumption was observed in hepatocytes after 40 min treatment with 100 μM NOR-3, even if the cell viability was unchanged. Reduction of oxygen consumption is an early indicator of the metabolic alterations in hepatocytes exposed to nitric oxide. These findings suggest that nitric oxide accumulation acts on hepatocyte cultures inducing cell death and reduction of urea synthesis after 2 hours., R. Chimenti, G. Martino, S. Mazzulla, S. Sesti., and Obsahuje bibliografii a bibliografické odkazy
Nitrogen (N) availability is a critical factor affecting photosynthetic acclimation of C3 plants under elevated atmospheric CO2 concentration ([CO2]e). However, current understanding of N effects on photosynthetic electron transport rate and partitioning, as well as its impact on photosynthesis under [CO2]e, is inadequate. Using controlled environment open-top chambers, wheat (Triticum aestivum L.) was grown at two N levels (0 and 200 mg(N) kg-1 soil) and two atmospheric CO2 concentrations of 400 ([CO2]a) and 760 μmol mol-1([CO2]e) during 2009 and 2010. Under [CO2]e high N availability increased stomatal conductance and transpiration rate, reduced limitations on the activity of triose phosphate isomerase, a Calvin cycle enzyme, and increased the rate of net photosynthesis (PN). Considering photosynthetic electron transport rate and partitioning aspects, we suggest that greater N availability increased PN under [CO2]e due to four following reasons: (1) higher N availability enhanced foliar N and chlorophyll concentrations, and the actual photochemical efficiency of photosystem (PS) II reaction centers under irradiance increased, (2) increase of total electron transport rate and proportion of open PSII reaction centers, (3) enhancement of the electron transport rate of the photochemical and carboxylation processes, and (4) reduced limitations of the Calvin cycle enzymes on the photosynthetic electron transport rate. Consequently, sufficient N improved light energy utilization in wheat flag leaves under [CO2]e, thus benefiting to photosynthetic assimilation. and X. C. Zhang, X. F. Yu, Y. F. Ma.
We investigated the predatory potential and food preference of different life stages of Coccinella septempunctata L. for a nutritious aphid (mustard aphid, Lipaphis erysimi) and toxic aphid (cabbage aphid, Brevicoryne brassicae). We provided all the life stages of C. septempunctata with either L. erysimi or B. brassicae and found that the second, third and fourth instar larvae and adult females of this predator consumed daily greater numbers of L. erysimi. However, the first instar larvae and adult males consumed similar numbers of both of these aphids. In choice condition, each larva, adult males and females were each provided separately with a mixed aphid diet in three proportions (i.e. low: high, equal: equal and high: low densities of L. erysimi: B. brassicae). We hypothesized that life stages of C. septempunctata will prefer L. erysimi regardless of its proportions. Laboratory experiments supported this hypothesis only at the adult level in terms of high values of β and C preference indices. However, it rejects this hypothesis at the larval level, as larvae preferred B. brassicae when provided with certain combinations and showed no preference in a few combinations. We infer that mixtures of nutritious and toxic aphids may enable this ladybird to overcome any probable nutritional deficiency and/or reduce the toxicity of a toxic diet, especially for the larvae. Results of the treatment in which a high proportion of B. brassicae were consumed along with fewer L. erysimi indicates that a mixed diet could be better for the development of immature stages of C. septempunctata., Mushtaq A. Guroo, Ahmad Pervez, Kuldeep Srivastava, Rakesh K. Gupta., and Obsahuje bibliografii
The partial shading effect on the photosynthetic apparatus of the sunflower (Helianthus annuus L.) was examined by monitoring oxygen evolution, maximum quantum yield of PSII photochemistry in dark-adapted leaves (Fv/Fm), the chlorophyll (Chl) concentrations and the Rubisco contents, and leaf mass per area (LMA) at the leaf level and by determining the concentrations of cytochrome (Cyt) f and the reaction centres of photosystem (PS) I and PSII at the thylakoid level. In this experiment, partial shading was defined as the shading of 2nd leaves with shade cloths, and the whole treatment was defined as the covering of the whole individuals with shade cloths. In the leaf level responses, oxygen evolution, LMA, Chl concentrations and Rubisco contents decreased in all shade treatments administered for six days. Fv/Fm remained constant irrespective of the shade treatments. On the other hand, in the thylakoid-level responses, the concentrations of the thylakoid components per unit Chl and the stoichiometry of the two photosystems showed no statistical difference among the shade treatments. The data obtained from the present study indicate that the partial shading affected the leaf-level responses rather than the thylakoid-level responses. The light received at the lower leaves might serve as a factor in the regulation of the leaf properties of the upper leaves due to the whole plant photosynthesis, while this factor did not have an effect at the thylakoid level., J. Ymazaki, Y. Shinomiya., and Obsahuje bibliografii
a1_Two experiments were performed to compare the effect of pectin and its hydrophobic derivatives on homeostasis of cholesterol and cecal metabolism in male young rats. Control rats were fed a diet supplemented with palm fat and cholesterol (50 and 10 g/kg, respectively). Rats of other gro ups were fed the same diet containing citrus pectin or octadecylpectinamide (60 g/kg). Diets were fed for 4 weeks. In experiment I, pectinamide of lower degree of amidation (30 %) increased serum HDL cholesterol from 1.20 to 1.43 μmol/ml (p>0.05) at the expense of other cholesterol fractions. In experiment II, pectinamide of a higher degree of amidation (53 %) significantly decreased total serum cholesterol from 2.08 to 1.67 μmol/ml. Amidated pectins at both levels of substitution significantly decreased hepatic concentrations of cholesterol and fat. In both experiments the relative weight of cecum in the pectinamide group was significantly lower than in pectin group. The highest cecal concentrations of short-chain fatty acids (SCFA) were found in rats fed a diet with pectin (133.2 and 129.3 μmol/g in experiment I and II, respectively). In other groups, cecal SCFA was significantly (pectinamide groups) or non-significantly (controls) lower. In wet feces, SCFA concentrations were higher and butyrate molar proportions lower than in corresponding cecal contents., a2_Pectinamide of a lower or higher degree of substitution significantly increased fecal content of cholesterol from 18.5 and 17.3 μmol/g in controls to 31.8 and 28.0 μmol/g, respectively. Corresponding concentrations of coprostanol were decreased. Effects of pectin on cholesterol homeostasis were absent or marginal. Histological examination revealed that hepatic tissue of control and pectin-fed rats was infiltrated with lipids. The Sudan black-positive material was absent in the liver of rats fed pectinamides. No pathological changes of liver tissue were apparent. In summary, hydrophobic amidated pectins significantly altered cholesterol homeostasis in rats and might be considered as a clinically effective hypocholesterolemic agent. Low cecal SCFA concentrations in rats fed pectinamides suggest that amidation of pectin had decreased its fermentability., M. Marounek, Z. Volek, A. Synytsya, J. Čopíková., and Obsahuje bibliografii a bibliografické odkazy
a_1 In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (PI,max) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev . min-1 and at 120 rev . min-1. In the studied group of subjects PI,max reached during cycling at 60 rev . min-1 was significantly higher (p=0.0001) than that at 120 rev . min-1 (287±29 vs. 215±42 W, respectively for 60 and 120 rev . min-1). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8±2.79 %) and group L with lower MyHC II content in this muscle (28.6±5.8 %). PI,max reached during cycling performed at 60 rev . min-1 in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev . min-1, there was no significant difference in PI,max reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO2), blood hydrogen ion [H+], plasma lactate [La-] and ammonia [NH3] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev . min-1, in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle., a_2 We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H+], [La-] and [NH3] concentrations. This indicates that at high pedaling rates the subjects with higher percentage of MyHC II in the vastus lateralis muscle perform relatively better than the subjects with lower percentage of MyHC II in this muscle., J. Majerczak, Z. Szkutnik, K. Duda, M. Komorowska, I. Kolodziejski, J. Karasinski, J. A. Zoladz., and Obsahuje bibliografii a bibliografické odkazy
Soil and changes in vegetation may affect ant assemblages, but the relative importance of each in different habitats is not well characterized. In particular, information on the effects of ecological restoration on arthropods is scarce. It was decided, therefore, to study how reforestation may affect an ant assemblage. Ants were sampled in area that had been reforested and adjacent grassland using pitfall traps. Soil surface and vegetation were characterized. The disturbance of the vegetation caused by reforestation resulted in a decrease in the cover of Stipa tenacissima and Cistaceae and an increase in the cover of pine. The mechanical preparation of the site also resulted in changes in the soil surface, with an increase in the cover of stones and rocks. Ant species richness and abundance were greater at the reforested site than in the grassland and more species showed a positive than a negative response to reforestation. The underlying causes of this pattern are mainly related to changes in vegetation and structure of the soil surface and are associated with the increase in the cover of pine, which most probably provided additional food resources, and the greater cover of stones and rocks that provided more shelter for the ant assemblage., Chema Catarineu, Joaquín Reyes-López, Joan A. Herraiz, Gonzalo G. Barberá., and Obsahuje bibliografii