The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces Lp(Rd) (in the case p > 1), but (in the case when 1/p(·) is log-Hölder continuous and p- = inf{p(x): x\in Rd > 1) on the variable Lebesgue spaces Lp(·)(Rd), too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type (1, 1). In the present note we generalize Besicovitch’s covering theorem for the so-called γ-rectangles. We introduce a general maximal operator Msγδ, and with the help of generalized Φ-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function 1/p(·) is log-Hölder continuous and p- ≥ s, where 1 ≤ s ≤ ∞ is arbitrary (or
p- ≥ s), then the maximal operator Msγδ is bounded on the space Lp(·)(Rd) (or the maximal operator is of weak-type (p(·), p(·)))., Kristóf Szarvas, Ferenc Weisz., and Obsahuje seznam literatury
Let H be a finite-dimensional bialgebra. In this paper, we prove that the category LR(H) of Yetter-Drinfeld-Long bimodules, introduced by F.Panaite, F.Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category H⊗H H⊗H YD over the tensor product bialgebra H H∗ as monoidal categories. Moreover if H is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results., Daowei Lu, Shuanhong Wang., and Seznam literatury
Otázku, kde se berou zákony zachování hybnosti, momentu hybnosti, mechanické energie a dalších veličin, lze v rámci klasické mechaniky či teorie pole zodpovědět různými způsoby. Principiálně však zachovávající se veličiny souvisejí s operacemi symetrie daného problému. Tuto souvislost odhaluje pro případ teorií řídících se variačním principem teorém Emmy Noetherové z roku 1918, odvozený klasickým "souřadnicovým" způsobem užívajícím variací, tehdy ve variačním počtu obvyklým. Propracovaný moderní geometrický aparát fibrovaných variet a diferenciálních forem "kopírujících" jejich struktura je mnohem účinnějším prostředkem pro formulaci jak variačních teorií samotných, tak i jejich důsledků právě typu teorému Noetherové. Podstatu geometrického přístupu lze objasnit již na nejjednodušším případu - jednorozměrném pohybu klasické částice v mechanice., The question of the origin of conservation laws for the momentum, angular momentum, mechanical energy and other quantities in classical mechanics and classical field theories can be answered by various ways. Nevertheless, in principle the conserved quantities are connected with the symmetry of a problem under consideration. For variational theories such a connection was disclosed by the Emmy Noether theorem derived in 1918 by a classical "coordinate" procedure using variations, which was typical for the former calculus of variations. The elaborate modern geometrical formalism of fibred manifolds and differential forms adapted to their fibred structure is a much more effective tool not only for variational theories themselves but also for their consequences as the Noether theorem. The merit of the geometrical approach can be explained by the simplest example - a one-dimensional motion of a classical mechanical particle., Lenka Czudková, Jana Musilová, Jitka Strouhalová., and Obsahuje bibliografii
Otázka přetrvávajícího nepoměrnéého zastoupení žen v matematice, fyzice a technických vědách je zajímavá vědecky i společensky. Dávno pryč je doba, kdy bylo nutno probojovávat vůbec samotnou příležitost žen v přírodních a exaktních vědách působit. Připomeňme si zde tyto zašlé časy textem profesora Augusta Seydlera, otištěným v Květech roku 1883. and August Seydler.