Many studies in cognitive linguistics have analysed the semantics of 'over', notably the
semantics associated with 'over' as a preposition. Most of them generally conclude that 'over' is
polysemic and this polysemy is to be described thanks to a semantic radial network, showing
the relationships between the different meanings of the word. What we would like to suggest
on the contrary is that the meanings of 'over' are highly dependent on the utterance context in
which its occurrences are embedded, and consequently that the meaning of 'over' itself is
under-specified, rather than polysemic. Moreover, to provide a more accurate account of the
apparent wide range of meanings of 'over' in context, we ought to take into account the other
uses of this unit: as an adverb and particle, and not only as a preposition. In this paper, we
provide a corpus-based description of 'over' which leads us to propose a monosemic definition. ,So as to achiev such a description, we used a short dataset of randomly selected 326 sentences containing 'over' in various positions in the sentences and corresponding to various categories.
domain specific corpus (Law, Economy, Computing, Medicine and Environment as well as a contrastive corpus from the press); EN 3.3 M tokens, SP 33 M tokens, CAT 19 M tokens; EAGLEs pos tagset
Software for corpus linguists and text/data mining enthusiasts. The CorpusExplorer combines over 45 interactive visualizations under a user-friendly interface. Routine tasks such as text acquisition, cleaning or tagging are completely automated. The simple interface supports the use in university teaching and leads users/students to fast and substantial results. The CorpusExplorer is open for many standards (XML, CSV, JSON, R, etc.) and also offers its own software development kit (SDK).
Source code available at https://github.com/notesjor/corpusexplorer2.0
This bilingual thesaurus (French-English), developed at Inist-CNRS, covers the concepts from the emerging COVID-19 outbreak which reminds the past SARS coronavirus outbreak and Middle East coronavirus outbreak. This thesaurus is based on the vocabulary used in scientific publications for SARS-CoV-2 and other coronaviruses, like SARS-CoV and MERS-CoV. It provides a support to explore the coronavirus infectious diseases. The thesaurus can be browsed and queried by humans and machines on the Loterre portal (https://www.loterre.fr), via an API and an rdf triplestore. It is also downloadable in PDF, SKOS, csv and json-ld formats. The thesaurus is made available under a CC-by 4.0 license.
CsEnVi Pairwise Parallel Corpora consist of Vietnamese-Czech parallel corpus and Vietnamese-English parallel corpus. The corpora were assembled from the following sources:
- OPUS, the open parallel corpus is a growing multilingual corpus of translated open source documents.
The majority of Vi-En and Vi-Cs bitexts are subtitles from movies and television series.
The nature of the bitexts are paraphrasing of each other's meaning, rather than translations.
- TED talks, a collection of short talks on various topics, given primarily in English, transcribed and with transcripts translated to other languages. In our corpus, we use 1198 talks which had English and Vietnamese transcripts available and 784 talks which had Czech and Vietnamese transcripts available in January 2015.
The size of the original corpora collected from OPUS and TED talks is as follows:
CS/VI EN/VI
Sentence 1337199/1337199 2035624/2035624
Word 9128897/12073975 16638364/17565580
Unique word 224416/68237 91905/78333
We improve the quality of the corpora in two steps: normalizing and filtering.
In the normalizing step, the corpora are cleaned based on the general format of subtitles and transcripts. For instance, sequences of dots indicate explicit continuation of subtitles across multiple time frames. The sequences of dots are distributed differently in the source and the target side. Removing the sequence of dots, along with a number of other normalization rules, improves the quality of the alignment significantly.
In the filtering step, we adapt the CzEng filtering tool [1] to filter out bad sentence pairs.
The size of cleaned corpora as published is as follows:
CS/VI EN/VI
Sentence 1091058/1091058 1113177/1091058
Word 6718184/7646701 8518711/8140876
Unique word 195446/59737 69513/58286
The corpora are used as training data in [2].
References:
[1] Ondřej Bojar, Zdeněk Žabokrtský, et al. 2012. The Joy of Parallelism with CzEng 1.0. Proceedings of LREC2012. ELRA. Istanbul, Turkey.
[2] Duc Tam Hoang and Ondřej Bojar, The Prague Bulletin of Mathematical Linguistics. Volume 104, Issue 1, Pages 75–86, ISSN 1804-0462. 9/2015
CUBBITT En-Cs translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2014 (BLEU):
en->cs: 27.6
cs->en: 34.4
(Evaluated using multeval: https://github.com/jhclark/multeval)
CUBBITT En-Fr translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2014 (BLEU):
en->fr: 38.2
fr->en: 36.7
(Evaluated using multeval: https://github.com/jhclark/multeval)
CUBBITT En-Pl translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2020 (BLEU):
en->pl: 12.3
pl->en: 20.0
(Evaluated using multeval: https://github.com/jhclark/multeval)