The PARSEME shared task aims at identifying verbal MWEs in running texts. Verbal MWEs include idioms (let the cat out of the bag), light verb constructions (make a decision), verb-particle constructions (give up), and inherently reflexive verbs (se suicider 'to suicide' in French). VMWEs were annotated according to the universal guidelines in 18 languages. The corpora are provided in the parsemetsv format, inspired by the CONLL-U format.
For most languages, paired files in the CONLL-U format - not necessarily using UD tagsets - containing parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe).
This item contains training and test data, tools and the universal guidelines file.
This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). VMWEs were annotated according to the universal guidelines in 19 languages. The corpora are provided in the cupt format, inspired by the CONLL-U format. The corpora were used in the 1.1 edition of the PARSEME Shared Task (2018).
For most languages, morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe).
This item contains training, development and test data, as well as the evaluation tools used in the PARSEME Shared Task 1.1 (2018).
The annotation guidelines are available online: http://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.1
This multilingual resource contains corpora in which verbal MWEs have been manually annotated, gathered at the occasion of the 1.2 edition of the PARSEME Shared Task on semi-supervised Identification of Verbal MWEs (2020).
VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do).
For the 1.2 shared task edition, the data covers 14 languages, for which VMWEs were annotated according to the universal guidelines. The corpora are provided in the cupt format, inspired by the CONLL-U format.
Morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe).
This item contains training, development and test data, as well as the evaluation tools used in the PARSEME Shared Task 1.2 (2020). The annotation guidelines are available online: http://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.2
Annotated corpus of 350 decision of Czech top-tier courts (Supreme Court, Supreme Administrative Court, Constitutional Court).
Every decision is annotated by two trained annotators and then manually adjudicated by one trained curator to solve possible disagreements between annotators. Adjudication was conducted non-destructively, therefore dataset contains all original annotations.
Corpus was developed as training and testing material for reference recognition tasks. Dataset contains references to other court decisions and literature. All references consist of basic units (identifier of court decision, identification of court issuing referred decision, author of book or article, title of book or article, point of interest in referred document etc.), values (polarity, depth of discussion etc.).
Annotated corpus of 350 decision of Czech top-tier courts (Supreme Court, Supreme Administrative Court, Constitutional Court).
Every decision is annotated by two trained annotators and then manually adjudicated by one trained curator to solve possible disagreements between annotators. Adjudication was conducted non-destructively, therefore corpus (raw) contains all original annotations.
Corpus was developed as training and testing material for reference recognition tasks. Dataset contains references to other court decisions and literature. All references consist of basic units (identifier of court decision, identification of court issuing referred decision, author of book or article, title of book or article, point of interest in referred document etc.), values (polarity, depth of discussion etc.).
Annotated corpus of 350 decision of Czech top-tier courts (Supreme Court, Supreme Administrative Court, Constitutional Court).
280 decisions were annotated by one trained annotator and then manually adjudicated by one trained curator. 70 decisions were annotated by two trained annotators and then manually adjudicated by one trained curator. Adjudication was conducted destructively, therefore dataset contains only the correct annotations and does not contain all original annotations.
Corpus was developed as training and testing material for text segmentation tasks. Dataset contains decision segmented into Header, Procedural History, Submission/Rejoinder, Court Argumentation, Footer, Footnotes, and Dissenting Opinion. Segmentation allows to treat different parts of text differently even if it contains similar linguistic or other features.
We defined 58 dramatic situations and annotated them in 19 play scripts. Then we selected only 5 well-recognized dramatic situations and annotated further 33 play scripts. In this version of the data, we release only play scripts that can be freely distributed, which is 9 play scripts. One play is annotated independently by three annotators.
We defined 58 dramatic situations and annotated them in 19 play scripts. Then we selected only 5 well-recognized dramatic situations and annotated further 33 play scripts. In the previous (first) version, we released 9 play scripts that could be freely distributed. In this (second) version of the data, we are adding another 10 plays for which we have obtained licenses from authors. In total, there are 19 play scripts available, and one of them is annotated three times - independently by three annotators.
Actress Anna Ondráková with her husband, boxer Max Schmelling, in Když hvězdy svítí (When the Stars Shine, dir. Hans H. Zerlett, 1938). The following footage includes clips showing Anna Ondráková in several other film roles, such as Velbloud uchem jehly (Camel Through the Eye of a Needle, dir. Karel Lamač, 1926), with the last clip being from Únos bankéře Fuxe (The Kidnapping of Fux the Banker, dir. Karel Anton, 1923).
Tool for manual on-line annotation of corpora at various linguistic levels. The levels currently implemented are: word-level and sentence-level segmentation, morphosyntax, word sense disambiguation. Anotatornia implements sophisticated mechanisms of the management of texts, annotators and conflicts.