The effects of environmental salinity on physiological responses, growth, and survival of the Gulf corvina, C. othonopterus, were evaluated in a 6-week completely randomized design experiment. Corvina (17.2±2.3 g mean initial body weight) were subjected to salinities of 5, 15, 25, and 35 ‰ and fed a commercial feed with protein and lipid contents of 46 and 14 %, respectively. Plasma osmolality increased significantly with salinity, ranging from 335.1±5.3 mOsm/kg in fish maintained at 5 ‰, to 354.8±6.8 mOsm/kg in fish kept in seawater, while a significant inverse relationship was observed between salinity and moisture content of whole fish, ranging from 73.8±0.7 (measured at 5 ‰) to 76.9±1.0 % (measured at 35 ‰). In spite of this, growth indices (final weight, weight gain, specific growth rate, condition factor, survival) were not altered, suggesting that, like other members of the family Sciaenidae, the Gulf corvina is a strong osmoregulator. The isosmotic point for this species was estimated to correspond to a salinity of 9.8 ‰. The present study represents the first set of experimental data on salinity tolerance of C. othonopterus and confirms the euryhalinity of this species., M. Perez-Velazquez, P. Urquidez-Bejarano, M. L. González-Félix, C. Minjarez-Osorio., and Obsahuje bibliografii
The purpose of this study was to investigate the occurrence and time-course of apoptosis in soleus skeletal muscle during the first 48 hours of unloading. Fifty Charles River mice were randomly divided into five groups (n=10 each) according to the time of hindlimb suspension (HS). Mice we re suspended for 0 (Control), 6 (6HS), 12 (12HS), 24 (24HS), and 48 hours (48HS). Soleus muscle atrophy was confirmed by a significant decrease of 20 % in muscle-wet weight and of 5 % in the ratio protein concentration/muscle wet-weight observed after 48 hours of unloading. The apoptotic index, the AIF (apoptosis-inducing factor) and p53 expression presented th eir uppermost value (304 %, 241 % and 246 %, respectively) at 24HS, and were preceded by the highest activity of caspase-3 and -8 at 12HS (170 % and 218 %, respectively) and of Bax/Bcl-2 content at 6HS (160 %). There were no marked ultrastructural alterations until 24 hours of simulated weightlessness. Lysosomal autophagic activity and infiltration of phagocytic cells were observed at 24HS and 48HS and might have contributed to the degenerative changes noticed in both groups. Though not consistently supported by morphological evidences, the biochemical parameters sustain the concept that the occurrence of apoptosis parallels the soleus atrophic response in its early phase., R. Ferreira, M. J. Neuparth, R. Vittorino, H. J. Appell, F. Amado, J. A. Duarte., and Obsahuje bibliografii a bibliografické odkazy
Obesity is often associated with metabolic impairments in peripheral tissues. Evidence suggests an excess of free fatty acids (FFA) as one factor linking obesity and related pathological conditions and the impact of FFA overload on skeletal muscle metabolism is described herein. Obesity is associated with dysfunctional adipose tissue unable to buffer the flux of dietary lipids. Resulting increased levels and fluxes of plasma FFA lead to ectopic lipid deposition and lipotoxicity. FFA accumulated in skeletal muscle are associated with insulin resistance and overall cellular dysfunction. Mechanisms supposed to be involved in these conditions include the Randle cycle, intracellular accumulation of lipid metabolites, inflammation and mitochondrial dysfunction or mitochondrial stress. These mechanisms are described and discussed in the view of current experimental evidence with an emphasis on conflicting theories of decreased vs. increased mitochondrial fat oxidation associated with lipid overload. Since different types of FFA may induce diverse metabolic responses in skeletal muscle cells, this review also focuses on cellular mechanisms underlying the different action of saturated and unsaturated FFA., J. Tumova, M. Andel, J. Trnka., and Obsahuje bibliografii
Recent studies reported association of sleep-disordered breathing (SDB) with testosterone and vitamin D deficiency. Low testosterone and vitamin D levels have been linked to fatigue and excessive daytime sleepiness (EDS). However, the impact of testosterone and vitamin D deficiency on EDS in subjects with SDB remains unknown. The aim of this study was to explore the predictors of EDS in habitual snorers. Role of testosterone, and vitamin D was studied in detail. We also looked for associations between testosterone, vitamin D, and sleep-related indices. We prospectively enrolled 291 consecutive male patients with habitual snoring. Baseline clinical characteristics were recorded on admission. Standard overnight polysomnography was performed to detect SDB, and Epworth Sleepiness Scale (ESS) was used to assess EDS. Blood samples were obtained in a fasting condition in the morning after polysomnography to determine levels of testosterone and vitamin D. Respiratory disturbance index (RDI) (95 % CI: 1.004-1.024, p=0.005) and the use of antihistamines (95 % CI: 1.083-11.901, p=0.037) were the only independent variables significantly associated with EDS in binary logistic regression analysis. In linear multiple regression analysis, body mass index (BMI) (Beta=-0.282, p˂0.001) and oxygen desaturation index (Beta=-0.150, p=0.043) were the only independent variables significantly associated with testosterone levels, and BMI (Beta=-0.142, p=0.016) was the only independent variable significantly associated with vitamin D. We failed to find any independent association of testosterone and vitamin D with subjectively rated EDS among habitual snorers. Our results suggest an independent association between the magnitude of nocturnal desaturation and testosterone levels., Pavel Šiarnik, Matúš Jurík, Miroslava Hardoňová, Katarína Klobučníková, Jakub Veverka, Pavol Šurda, Peter Turčáni, Branislav Kollár., and Obsahuje bibliografii
The aim of this study was to determine whether excessive oxygen uptake (V.o2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak V.o2, respectively. V.o2 kinetics above zero watts was obtained by subtracting V.o2 at zero watts of previous exercise (ΔV.o2). ΔV.o2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the ΔV.o2 applicable to heavy exercise. The difference between ΔV.o2 in heavy exercise and ΔV.o2 estimated from the value of moderate exercise was obtained. The obtained V.o2 was defined as excessive V.o2. The time constant of excessive V.o2 during exercise (1.88±0.70 min) was significantly shorter than that during recovery (9.61±6.92 min). Thus, there was excessive V.o2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery., T. Zano, T. Yunoki, R. Matsuura, T. Arimitsu, T. Kimura., and Obsahuje bibliografii a bibliografické odkazy
Pregnant rats were exposed to intermittent hypobaric hypoxia (at a simulated altitude of 7000 m or 5000 m) and the excitability of cortical neurons of their pups was tested. Stimulation of the sensorimotor cortex of rats prenatally exposed to hypoxia shortened the duration of cortical afterdischarges in 12-day-old rats, but did not change the excitability in 25-day-old animals. Shortening of the first afterdischarge in 35-day-old rats but the prolongation of the first afterdischarge in adult rats (as compared to the duration of cortical afterdischarges in rats not exposed to prenatal hypoxia) were registered. The possible mechanisms of different excitability of cortical neurons in rats prenatally exposed to hypobaric hypoxia are discussed., D. Marešová, I. Valkounová, K. Jandová, J. Bortelová, S. Trojan., and Obsahuje bibliografii
Vascular smooth muscle cells (VSMC) display considerable phenotype plasticity which can be studied in vivo on vascular remodeling which occurs during acute or chronic vascular injury. In differentiated cells, which represent contractile phenotype, there are characteristic rapid transient changes of intracellular Ca2+ concentration ([Ca2+]i), while the resting cytosolic [Ca2+]i concentration is low. It is mainly caused by two components of the Ca2+ signaling pathways: Ca2+ entry via L-type voltagedependent Ca2+ channels and dynamic involvement of intracellular stores. Proliferative VSMC phenotype is characterized by long-lasting [Ca2+]i oscillations accompanied by sustained elevation of basal [Ca2+]i. During the switch from contractile to proliferative phenotype there is a general transition from voltagedependent Ca2+ entry to voltage-independent Ca2+ entry into the cell. These changes are due to the altered gene expression which is dependent on specific transcription factors activated by various stimuli. It is an open question whether abnormal VSMC phenotype reported in rats with genetic hypertension (such as spontaneously hypertensive rats) might be partially caused by a shift from contractile to proliferative VSMC phenotype., E. Misárková, M. Behuliak, M. Bencze, J. Zicha., and Obsahuje bibliografii
The effects of Lathyrus sativus neurotoxin were studied on the cell membrane potential and cellular cation composition in Retzius nerve cells of the leech Haemopis sanguisuga, with ion-selective microelectrodes using liquid ion-exchangers. Bath application of 10-4 mol/l Lathyrus sativus neurotoxin for 3 min depolarized the cell membrane potential and decreased the input resistance of directly polarized membrane in Retzius neurons. At the same time the cellular Na+ activity increased and cellular K+ activity decreased with slow but complete recovery, while the intracellular Ca2+ concentration was not changed. Na+-free Ringer solutions inhibited the depolarizing effect of the neurotoxin on the cell membrane potential. Zero-Ca2+ Ringer solution or Ni2+-Ringer solution had no influence on the depolarizing effect of the neurotoxin on the cell membrane potential. It is obvious that the increase in membrane conductance and depolarization of the cell membrane potential are due to an influx of Na+ into the cell accompanied by an efflux of K+ from the cell., D. Cemerikić, V. Nedeljkov, S. Lopičić, S. Dragović, B. Beleslin., and Obsahuje bibliografii
It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by highfat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity., G. Li, J.-Y. Liu, H.-X. Zhang, Q. Li, S.-W. Zhang., and Obsahuje bibliografii
This study investigated the effect of exercise training on the flow- mediated dilation (FMD) in gastrocnemius muscle arteries from spontaneously hypertensive rats (SHR). SHR and WKY rats were divided into sedentary and exercised groups. After swimming exercise for eight weeks, the isolated arteries were mounted on pressurized myograph and FMD re sponses examined. The role of nitric oxide (NO), prostaglandins (PGs) and endothelium derived hyperpolarizing factor (EDHF) on FMD were assessed by obtaining dilation responses in the presence and absence of pharmacological antagonists. Nω-nitro-L-arginine methyl ester (L-NAME), indomethacin (INDO) and tetraethylamonium (TEA) were used to inhibit nitric oxide synthase, cyclooxygenase and EDHF-mediated responses, respectively. The FMD response was significantly blunted in arteries of SHR compared with WKY rats, and, improved by exercise training in SHR (SHR-ET) group. In SHR arteries, L-NAME and TEA did not affect dilation responses to flow, while INDO led to a significant enhancement in this response. Although dilation response was not altered by L-NAME in arteries obtained from trained SHR, TEA caused a significant attenuation and INDO led to significant increases. These results demonstrate that exercise training improves FMD in SHR, and, this enhancement induced by exercise training occurs through EDHF-mediated mechanism(s)., F. Gündüz ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy