The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms.
Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems., C. R. Muniz, F. C. O. Freire, F. M. P. Viana, J. E. Cardoso, C. A. F. Sousa, M. I. F. Guedes, R. van der Schoor, H. Jalink., and Obsahuje bibliografii
We investigated the effect of moderate Cu2+ and Cd2+ stress by applying chlorophyll (Chl) fluorescence and P700 absorbance measurements to monitor the photosynthetic electron transport activity of 3-week-old Pisum sativum L. cv. Petit Provençal plants grown in a modified Hoagland solution containing 50 μM CuSO4 or 5 μM CdCl2. Both heavy metals caused a slight inhibition in PSII photochemistry as indicated by the decrease in the effective quantum efficiency of PSII (ΦPSII), the maximum electron transport capacity (ETRmax), and the maximum quantum yield for electron transport (α). PSI photochemistry was also affected by these heavy metals. Cu2+ and Cd2+ decreased the quantum efficiency of PSI (ΦPSI) as well as the number of electrons in the intersystem chain, and the Cu2+ treatment significantly reduced the number of electrons from stromal donors available for PSI. These results indicate that PSII and PSI photochemistry of pea plants are both sensitive to moderate Cu2+ and Cd2+ stress, which in turn is easily detected and monitored by Chl fluorescence and P700 absorbance measurements. Therefore, monitoring the photochemistry of pea plants with these noninvasive, yet sensitive techniques offers a promising strategy to study heavy metal toxicity in the environment., B. Wodala ... [et al.]., and Obsahuje bibliografii
Mor je zoonóza, jejíž epidemie sužují lidstvo od starověku. Od objevu bakteriálního původce moru A. Yersinem a S. Kitasatem uplynulo 120 let, během kterých byla tato choroba velmi dobře popsána jak z epidemiologického, tak z molekulárně mikrobiologického a evolučního hlediska. Studiem DNA izolované z ostatků obětí moru byl původce moru přímo prokázán u epidemií starých až 650 let. Vysoká mortalita při moru je dána neefektivním přenosem mezi hostiteli pomocí blechy jako vektoru., Plague is a zoonotic disease, the epidemics of which have troubled mankind since ancient times. During the last 120 years that have passed since the discovery of the plague bacillus Y. pestis by A. Yersin and S. Kitasato this infectious disease was described in detail, including its epidemiology, molecular microbiology and evolution. Ancient DNA isolated from the remains of plague victims have enabled us to establish Y. pestis as the causative agent in epidemics more than 650 years old. The high mortality of the plague is caused by an ineffective transfer by its flea vector., and Ivo Konopásek.
Morpho-physiological and biochemical analyses were carried out in eight diverse indigenous muskmelon (Cucumis melo L.) genotypes exposed to different degrees of water deficit (WD). The ability of genotypes MM-7, and especially MM-6, to counteract better the negative effect of WD was associated with maintaining higher relative water content (RWC), photosynthetic rate, efficiency of PSII, and photosynthetic pigments compare to other genotypes. Furthermore, MM-6 showed a better ability to maintain cellular homeostasis than the others. It was indicated by a stimulated antioxidative defense system, i.e., higher activities of antioxidant enzymes, accumulation of nonenzymatic antioxidants together with lower concentration of reactive oxygen species and malondialdehyde. However, the genotypes MM-2 and MM-5 suffered greatly due to WD and showed reduced RWC, photosynthetic rates, pigment content, and exhibited higher oxidative stress observed as lower antioxidant enzyme activities., W. A. Ansari, N. Atri, B. Singh, P. Kumar, S. Pandey., and Obsahuje bibliografii
a1_The recomposition of deforested environments demands the acclimation of seedlings in nurseries. This process induces changes in physiological, anatomical, and morphological traits of plants, favouring their establishment after transplantation to the field. The present study aimed to verify the influence of full-sun acclimation on seedling hardiness. For the purpose, leaf gas-exchange, plant anatomical and morphological parameters of three tree species [Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae), Croton floribundus Spreng. (Euphorbiaceae), and Cecropia pachystachya Trecul (Urticaceae)], which are used for reforestation in the Brazilian Atlantic biome, were evaluated. Seedlings were grown under 40% of total PPFD (shaded control) and under full sun (acclimated) for 168 days. The acclimation process induced a higher leaf production rate in C. speciosa and C. floribundus, whereas C. pachystachya seedlings replaced their leaves quickly, irrespective of the light conditions. The newly developed leaves of all three species presented a lower area and thicker palisade parenchyma, resulting in a reduced specific leaf area. The seedlings of C. speciosa and C. pachystachya showed increases in light-saturated net photosynthesis and transpiration rates, whereas water-use efficiency generally remained unchanged in all three species. The full-sun acclimated seedlings of C. pachystachya showed a reduced relative growth rate, lower height/stem diameter (H/D) and shoot to root dry mass ratios, characteristics that may result in greater physical resistance and ability for water and nutrient uptake to support the higher transpiratory demand under full sun. The reduction of the H/D ratio also occurred in the acclimated seedlings of C. speciosa., a2_The seedlings of C. floribundus showed few changes during acclimation, but they did not seem to be affected by excessive light. In spite of the observed differences among the three species, all of them developed hardiness characteristics, mainly related to leaf anatomy, which should favour their establishment after transplantation to the field., A. K. Calzavara, E. Bianchini, T. Mazzanatti, H. C. Oliveira,
R. Stolf-Moreira, J. A. Pimenta., and Obsahuje seznam literatury
Morphological and ecophysiological traits showed by male and female Populus tomentosa Carr. trees were studied under various degrees of water and alkaline stresses. The results showed that different adaptations to drought and alkaline stresses were adopted by each gender; males possessed a much higher tolerance to both stresses compared to females. In contrast to females, the males exhibited a lower inhibition in total biomass, total leaf area, net photosynthetic rate, stomatal conductance, leaf carbon and nitrogen concentrations as well as water- and nitrogen-use efficiency in response to drought and alkaline stresses. Nevertheless, compared to the males, the females showed a higher plasticity in root biomass/shoot biomass ratio, fine root/coarse root ratio, and intrinsic water-use efficiency, indicating that the males and females differed in some of trade-offs between growth and stress defence to maximize water and nitrogen gains under both stress conditions., Y. W. Lu, X. L. Miao, Q. Y. Song, S. M. Peng, B. L. Duan., and Obsahuje bibliografii
This study aimed to investigate the effects of waterlogging on the growth and photosynthetic characteristics of paired near-isogenic lines of waterlogging-tolerant (Zz-R) and waterlogging-sensitive
(Zz-S) waxy corn inbred line seedlings. All plants were grown until the fifth leaves were fully expanded. Subsequently the plants in the pots were submerged in water for 4 d. During the waterlogging period, morphological and photosynthetic parameters related to waterlogging tolerance were examined. After 4 d, a significant decrease was observed in shoot and root fresh mass, net photosynthetic rate, stomatal conductance, transpiration, water-use efficiency, light-saturation point, maximal photosynthetic rate, apparent quantum yield, maximal quantum yield of PSII, and effective quantum yield of PSII photochemistry in waterlogged plants of both genotypes. The Zz-R genotype showed lesser reduction in all mentioned indices when compared to the Zz-S genotype. The inhibition of photosynthesis under waterlogging occurred due to the reduction in stomatal conductance, fluorescence parameters, and chlorophyll content. Thus, our study revealed that the Zz-R genotype can be a source of genetic diversity for important traits such as morphological and photosynthetic parameters., M. Zhu, F. H. Li, Z. S. Shi., and Obsahuje bibliografii
This study was performed to evaluate the ecophysiological acclimation of Catalpa bungei plantlets to different light conditions. We hypothesized that the acclimation of old and newly developed leaves to both increasing and decreasing irradiance should follow different patterns. The growth, photosynthesis, chlorophyll (Chl) content, and Chl fluorescence response were examined over a range of light treatments. The plants were grown under fixed light intensities of 80% (HH), 50% (MM), 30% (LL) of sun light and transferring irradiance of 80% to 50% (HM), 80% to 30% (HL), 30% to 50% (LM) and 30% to 80% (LH). For old leaves, light-saturation point, photosynthetic capacity, dark respiration rate of LH were lower than that of HH, while HL were higher than LL, indicating that light-response parameters were affected by the original growth light environment. Initial fluorescence increased and variable fluorescence decreased in LH and LM after transfer, and the PSII damage was more serious in LH than that in LM, and could not recover within 30 d. It suggested that the photoinhibition damage and recovery time in old leaves was related to the intensity of light after transfer. For the newly emerged leaves with leaf primordia formed under the same light environment, a significant difference was observed in leaf morphology and pigment contents, suggesting that previous light environment exhibited carry-over effect on the acclimation capacity to a new light environment. Our result showed that thinning and pruning intensity should be considered in plantation management, because great changes in light intensity may cause photoinhibition in shade-adapted leaves., J. W. Wu, Y. Su, J. H. Wang, Q. He, Q. Qiu, J. W. Ma, J. Y. Li., and Obsahuje bibliografii
Gastrointestinal form is the second stage of the Acute Radiation Syndrome (ARS) with a threshold dose of 8 Gy. It represents an absolutely lethal clinical-pathological unit, enteritis necro-hemorrhagica (duodenitis, jejunitis, ileitis, respectively) with unknown causal therapy. The purpose of our study has been to evaluate the morphological changes in a model of radiation-induced enteritis in rats and estimate the significance of changes in biodosimetry. Wistar rats were randomly divided into 21 groups, 10 animals per group. Samples of the jejunum were taken 24, 48, 72, and 96 h after the whole-body γ-irradiation with the doses of 1, 5, 10, 15, and 20 Gy, and routinely stained with hematoxylin and eosin. Five morphometric markers – intercryptal distance, enterocytal height on the top and base of villus, length of basal lamina of 10 enterocytes and enterocytal width – in irradiated rat jejunum were examined. The results were compared with sham-irradiat ed control group. After lethal doses of irradiation, all morphometric parameters of jejunum significantly changed. With the exception of intercryptal distance, they might be considered as suitable biodosimetric markers under these experimental conditions. Our morphometry results in radiation-induced jejunitis are in accordance with those in other studies. We were the first who quantified morphological post-irradiation changes in animal jejunum. Some of them might be used under experimental conditions. This experimental study is a predecessor of the clinical assessment of a specific marker. Under clinical practice, the sensitive biodosimetric parameter could serve as one of the guidance for evaluation of the absorbed dose in irradiated troops as well as rescue workers. This is in accordance with tasks and Standardization Agreement of the North Atlantic Treaty Organization., D. Driák, J. Österreicher, J. Vávrová, Z. Řeháková, Z. Vilasová., and Obsahuje bibliografii a bibliografické odkazy
The recognition of aquatic organisms plays a crucial role in the monitoring of the pollution and for the adoption of rapid preventive actions. A compact microscopic optical imaging system is proposed in order to acquire and treat the multibands fluorescence of several pigments in phytoplankton organisms. Two algorithms for automatic recognition of phytoplankton were proposed with a minimum number of calibration parameters. The first algorithm provides a morphological recognition based on "watershed" segmentation and Fourier descriptors, while the second one builds fluorescence pigment images by "k-means" partition of intensity ratios. The operation of these algorithms was illustrated by the study of two different organisms: a cyanobacteria (Dolichospermum sp.) and an alga (Cladophora sp.). The family and the genus of these organisms were then classified into a database which is independent of the size, the orientation and the position of the specimens in the images., M. Lauffer, F. Genty, S. Margueron, J. L. Collette., and Obsahuje bibliografii