After global cerebral hypoxia, many patients are severely disabled even after intensive neurorehabilitation. Secondary mechanisms of brain injury as a result of biochemical and physiological events occur within a period of hours to months, and provide a window of opportunity for therapeutic intervention. Erythropoietin (EPO) has been shown to be neuroprotective in the brain subjected to a variety of injuries. Fifty-nine 3-month-old male Wistar rats were randomly distributed to experimental groups with respect to the housing (enriched environment – EE, standard housing – SH), to hypoxia exposure, and to EPO treatment. An acute mountain sickness model was used as a hypobaric hypoxia simulating an altitude of 8000 m. One half of the animals received erythropoietin injections, while the others were injected saline. Spatial memory was tested in a Morris water maze (MWM). The escape latency and the path length were measured. Better spatial learning in MWM was only seen in the group that received erythropoietin together with enriched environment. EPO administration itself had no influence on spatial memory. The results were very similar for both latencies and path lengths. These results support the idea that after brain injuries, the recovery can be potentiated by EPO administration combined with neurorehabilitation., M. Hralová, ... [et al.]., and Obsahuje seznam literatury
Hypoxic pulmonary hypertension (HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries. Mast cells have an important role in many inflammatory diseases and they are also involved in tissue remodeling. Tissue hypoxia is associated with mast cell activation and the release of proteolytic enzymes, angiogenic and growth factors which mediate tissue destruction and remodeling in a variety of physiological and pathological conditions. Here we focused on the role of mast cells in the pathogenesis of hypoxic pulmonary hypertension from the past to the present., H. Maxová, J. Herget, M. Vízek., and Obsahuje seznam literatury
A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patchclamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (–30 to –90 cm H2 O applied via the patch pipette) induced a current that could be inhibited by 10 µM of ruthenium red. This current was also inhibited by 20 µM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca2+ ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation., D. Zhang ... [et al.]., and Obsahuje seznam literatury
The multi-functional proteins, insulin-like growth factor-I (IGF-I) and leptin were present in seminal plasma from different species. Concentrations of IGF-I in equine and porcine semen were 20 and 17.5 ng/ml, respectively. Seminal plasma concentrations of leptin were 1 ng/ml in human and 11 ng/ml in porcine samples., B. R. Lackey, S. L. Gray, D. M. Henricks., and Obsahuje bibliografii
We have studied the mechanism of Na+ deprivation-induced catecholamine secretion from freshly isolated bovine adrenal chromaffin cells. Na+ deprivation-induced catecholamine secretion depended on free extracellular Ca2+ concentrations and was almost parallel to 45Ca2+ influx into the cells under various experimental conditions. Furthermore, Na+ deprivation-induced 45Ca2+ influx and catecholamine secretion were actually induced by a relative Na+ concentration gradient across the plasma membrane, but not by simple omission of Na+ from the medium. These results indicate that the deprivation of Na+ from the medium changes the relative Na+ gradient across the plasma membrane and results in Ca2+ influx via a reverse mode of Na+-Ca2+ exchange rather than by inducing Ca2+ entry through Ca2+ channels by eliminating the competition between extracellular Na+ and Ca2+., M. Isosaki, T. Nakashima., and Obsahuje bibliografii
The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function and expression, and glycogen utilization. The SHHFex rats ran a greater distance and duration as compared to the WFex rats (P<0.05), but the WFex rats ran at a faster speed (P<0.05). Skeletal muscle citrate synthase and β-hydroxyacyl-CoA dehydrogenase enzyme activity was not altered in the SHHFex group, but was increased (P<0.05) in the WFex animals. Citrate synthase protein and gene expression were unchanged in SHHFex animals, but were increased in WFex rats (P<0.05). In the WFex animals muscle glycogen was significantly depleted after exercise (P<0.05), but not in the SHHFex group. We conclude that despite robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal muscle., R. L. Schultz, ... [et al.]., and Obsahuje seznam literatury
The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [3 H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [3 H]-DHEAS to [ 3 H]-androstenedione, [3 H]-testosterone, [3 H]-estrone and [ 3 H]-17β-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E1 S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [3 H]-estrone to [3 H]-17β- estradiol. This is the first demonstration that human platelets are able to import DHEAS and E1 S using the OATP family and to convert DHEAS to active DHEA, and to transform E1 S to 17β- estradiol., A. Garrido ... [et al.]., and Obsahuje seznam literatury
The left and right ventricle originate from distinct parts of the cardiac tube, and several genes are known to be differentially expressed in these compartments. The aims of this study were to determine developmental differences in gene expression between the left and right ventricle, and to assess the effect of altered hemodynamic loading. RNA was extracted from isolated left and right normal chick embryonic ventricles at embryonic day 6, 8, and 10, and from day 8 left atrial ligated hearts with hypoplastic left and dilated right ventricles. cRNA was hybridized to Affymetrix Chicken Genome array according to manufacturer protocols. Microarray analysis identified 302 transcripts that were differentially expressed between the left and right ventricle. Comparative analysis detected 91 genes that were different in left ventricles of ligated hearts compared to age-matched ventricles, while 66 were different in the right ones. A large number of the changes could be interpreted as a delay of normal maturation. The approach described in this study could be used as one of the measures to gauge success of surgical procedures for congenital heart disease and help in determining the optimal time frame for intervention to prevent onset of irreversible changes., E. Krejčí, ... [et al.]., and Obsahuje seznam literatury
Glucocorticoids (GCs) are steroid hormones produced by the adrenal cortex in reaction to stress stimuli. GCs production is not stable over a 24-hour period; the plasma concentration peaks in the morning (approximately upon awakening) and then the plasma levels decrease, reaching the nadir in the evening. In our experiments, the levels of cortisol, cortisone, DHEA and DHEAS were tested in young female pigs (n=23) during heart catheterization at two different day times (in the morning and in the afternoon). The non-parametric Mann-Whitney test for statistical analysis was used. We found only minimal statistical differences in studied markers between the morning and afternoon group (p>0.05). The absence of circadian variation in GCs levels could originate either at an early age of our experimental pigs, or in stressful conditions on the experiment day, or most likely the day before (e.g. social isolation, fasting, transport, and catheterization), respectively. We can conclude there is no difference in the stress load between morning and afternoon experiments, and therefore we can assume the stress load is not a limiting factor for the timing when catheterization should be preferably performed., H. Skarlandtová ... [et al.]., and Obsahuje seznam literatury
Myocardial blood flow is spatially heterogeneous, reflecting non-uniform oxygen supply. Also, myocardial oxida-tive metabolism is spatially heterogeneous. The effects of acute ischemia and reperfusion on the rela-tionship between local myocardial blood flow (LMF) and oxi-dative metabolism are still unknown. LMF was measured in isolated, blood-perfused rabbit hearts using colored microspheres and oxidation water labeled with 18O2 (H218O). Three protocols were performed: 18O2-perfusion during normoxia (N; n=7), during early reperfusion (ER; 10 min, n=6), and late reperfusion (LR; 40 min, n=6) following 20 min no-flow ischemia. LMF and local H218O residues were determined within defined myocardial samples (105 ± 15 mg). For interindividual comparison, values were normalized to the mean of the individual experiment and expressed as percentages. LMF ranged from 18 to 193 % (N), 12 to 250 % (ER), and 11 to 180 % (LR). The H218O tissue residue ranged from 63 to 132 % (N), 73 to 142 % (ER) and 32 to 148 % (LR). The correlation between LMF and local oxidative metabolism during N (r=0.77; n=56) was lost in the postischemic heart during ER and LR. LMF during N and ER were only weakly correlated (r=0.24; n=48), whereas LMF during N and LR correlated well (r=0.87; n=48). It is concluded that the heterogeneous LMF pattern at baseline is maintained in the stunned myocardium whereas that of local oxidative metabolism is not. Apart from the established mechanisms underlying myocardial stunning, a mismatch between local flow and oxidative metabolism might also con-tribute., U. Schwanke, G. Heusch, J. D. Schipke., and Obsahuje bibliografii