We investigated ventilation (V . E) control factors during recovery from light impulse-like exercise (100 watts) with a duration of 20 s. Blood ions and gases were measured at rest and during recovery. V . E, end tidal CO2 pressure (PETCO2) and respiratory exchange ratio (RER) were measured continuously during rest, exercise and recovery periods. Arterial CO2 pressure (PaCO2 pre) was estimated from PETCO2 and tidal volume (VT). RER at 20 s of exercise and until 50 s during recovery was significantly lower than RER at rest. Despite no change in arterialized blood pH level, PaCO2 pre was significantly higher in the last 10 s of exercise and until 70 s during recovery than the resting value. V . E increased during exercise and then decreased during recovery; however, it was elevated and was significantly higher than the resting value until 155 s (p<0.05). There was a significant relationship between V . E and PaCO2 pre during the first 70 s of recovery in each subject. The results suggest that PaCO2 drives V . E during the first 70 s of recovery after light impulse-like exercise. Elevated V . E in the interval from 70 s until 155 s during recovery might be due to neural factors., R. Afroundeh, ... [et al.]., and Obsahuje seznam literatury
The influence of renal nerves on the effects of concurrent NO synthase inhibition (10 mg kg-1 b.w. i.v. L-NAME) and ETA/ETB receptor inhibition (10 mg kg-1 b.w. i.v. bosentan) on renal excretory function and blood pressure in conscious spontaneously hypertensive rats (SHR) was investigated. L-NAME increased blood pressure, urine flow rate, fractional excretion of sodium, chloride and phosphate in both normotensive Wistar rats and SHR with intact renal nerves (p<0.01). GFR or RBF did not change in any of the groups investigated. The effects of L-NAME on renal excretory function were markedly reduced by bosentan and the values returned to control level in the normotensive rats, while in SHR the values were reduced by bosentan, but they remained significantly elevated as compared to control level (p<0.05). The hypertensive response induced by L-NAME in SHR is partially due to activation of endogenous endothelins, but it does not depend on renal nerves. Chronic bilateral renal denervation abolished the effect of L-NAME on sodium and chloride excretion in normotensive rats, whereas it did not alter this effect in SHR. The participation of endogenous endothelins in changes of renal excretory function following NO synthase inhibition is diminished in SHR as compared to Wistar rats., R. Girchev, P. Markova., and Obsahuje bibliografii a bibliografické odkazy
Antiorthostatic hindlimb suspension (unloading) decreased the resting membrane potential (RMP) of skeletal muscle fibers in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat by about 10 % within 7 days and more. Inactivation of the membrane Na+,K+-pump by ouabain brought about similar depolarization as unloading. The increased sodium permeability of the membrane was excluded as the major cause of this depolarization by experiments in which TRIS was substituted for Na+ in the medium. On the other hand, the decrease in the electrogenic participation of the Na+,K+-pump is apparently one of the causes of RMP decrease during hypogravity, in EDL muscle in particular., O. Tyapkina ... [et al.]., and Obsahuje seznam literatury
The present review is intended to focus on naturally occurring cytoprotective agents such as resveratrol (trans-3,4’,5- trihydroxystilbene) and other related compounds, probably with similar molecular mechanisms of action and high capacity to find applications in medical fields. Several physiological aspects have been ascribed to resveratrol and similar compounds. Resveratrol, among others, has been recently described as a silent information regulator T1 (SIRT1) activator that increases AMPactivated protein kinase (AMPK) phosphorylation and reduces the oxidative damage biomarkers during aging in laboratory settings. The reports on resveratrol and other SIRT1 activators from various sources are encouraging. The pharmacological strategies for modulation of sirtuins by small molecules through allosteric mechanisms should gain a greater momentum including human research. Resveratrol and resveratrol-like molecules seem to fulfill the requirement of a new horizon in drug research since these molecules cover a growing research means as antioxidants with allosteric mechanism in epigenetic drug targets. However, one should keep in mind the challenges of extrapolation of basic research into clinical results. Overall, the issue of sirtuins in biology and disease provides an insight on therapeutic potentials of sirtuin-based therapeutics and demonstrates the high complexity of drug-targeting these modalities for human applications., H. Farghali, N. Kutinová Canová, N. Lekić., and Obsahuje seznam literatury
Retinol binding protein 4 (RBP4) is a novel adipokine which might be involved in the development of insulin resistance. The aim of the study was to investigate the expression of RBP4 mRNA in subcutaneous and visceral fat depots and the relationship between RBP4 plasma and mRNA levels relative to indices of adiposity and insulin resistance. In 59 Caucasian women (BMI 20 to 49 kg/m2 ) paired samples of subcutaneous and visceral fat were obtained for RBP4, leptin and GLUT 4 mRNA analysis using reverse transcription-quantitative PCR. Euglycemic hyperinsulinemic clamp and computed tomography scans were performed. RBP4 mRNA levels as well as GLUT 4 mRNA and leptin mRNA levels were lower (P<0.001, P<0.01 and P<0.001, respectively) in visceral compared to subcutaneous fat. No differences were found in RBP4 mRNA expression in the two fat depots or in RBP4 plasma levels between subgroups of non-obese subjects (n=26), obese subjects without metabolic syndrome (n=17) and with metabolic syndrome (n=16). No correlations between RBP4 mRNA or plasma levels relative to adiposity, glucose disposal rate and GLUT 4 mRNA expression in adipose tissue were found. There was a weak positive correlation between plasma RBP4 and plasma triglycerides (r = 0.30, p<0.05) and between plasma RBP4 and blood glucose (r = 0.26, p<0.05). Regardless of the state of adiposity or insulin resistance, RBP4 expression in humans was lower in visceral than in subcutaneous fat. We found no direct relationship between either RBP4 mRNA or its plasma levels and the adiposity or insulin resistance. and Obsahuje bibliografii a bibliografické odkazy
The vessels on the fetal side of the placenta differ from most other vascular beds except the lungs in that they respond to acute hypoxia by vasoconstriction. An essential role of calcium influx in the mechanism of this hypoxic fetoplacental vasoconstriction (HFPV) has been shown previously. That finding does not, however, exclude the possible involvement of other mechanisms of vascular tone regulation. In this study we tested the hypothesis that Rho-kinase-mediated calcium sensitization is involved in HFPV. We used a model of isolated rat placenta dually perfused (from both the maternal and fetal side) with Krebs salt solution saturated with normoxic and hypoxic gas mixture respectively at constant flow rate. Rho-kinase pathway was inhibited by fasudil (10 μM). We found that fasudil reduced basal normoxic fetoplacental vascular resistance and completely prevented HFPV. This suggests that the activity of Rho-kinase signaling pathway is essential for HFPV., P. Kafka, ... [et al.]., and Obsahuje seznam literatury
The present study was performed to evaluate the role of neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) during the developmental phase of hypertension in transgenic rats harboring the mouse Ren-2 renin gene (TGR). The first aim of the present study was to examine nNOS mRNA expression in the renal cortex and to assess the renal functional responses to intrarenal nNOS inhibition by S-methyl-L-thiocitrulline (L-SMTC) in heterozygous TGR and in age-matched transgene-negative Hannover Sprague-Dawley rats (HanSD). The second aim was to evaluate the role of the renal sympathetic nerves in mediating the renal functional responses to intrarenal nNOS inhibition. Thus, we also evaluated the effects of intrarenal L-SMTC administration in acutely denervated TGR and HanSD. Expression of nNOS mRNA in the renal cortex was significantly increased in TGR compared with HanSD. Intrarenal administration of L-SMTC decreased the glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion and increased renal vascular resistance (RVR) in HanSD. In contrast, intrarenal inhibition of nNOS by L-SMTC did not alter GFR, RPF or RVR and elicited a marked increase in sodium excretion in TGR. This effect of intrarenal L-SMTC was not observed in acutely denervated TGR. These results suggest that during the developmental phase of hypertension TGR exhibit an impaired renal vascular responsiveness to nNOS derived NO or an impaired ability to release NO by nNOS despite enhanced expression of nNOS mRNA in the renal cortex. In addition, the data indicate that nNOS-derived NO increases tubular sodium reabsorption in TGR and that the renal nerves play an important modulatory role in this process., L. Červenka, H. J. Kramer, J. Malý, I. Vaněčková, A. Bäcker, D. Bokemeyer, M. Bader, D. Ganten, K. D. Mitchell., and Obsahuje bibliografii
The saccadic eye movement related potentials (SEMRPs) enable to study brain mechanisms of the sensorimotor integration. SEMRPs provide insight into various cognitive mechanisms related to planning, programming, generation and execution of the saccadic eye movements. SEMRPs can be used to investigate pathophysiological mechanisms of several disorders of the central nervous system. Here we shortly summarize basic findings concerning the significance of SEMRP components, their relationship to the functional brain asymmetry and visual attention level as well as changes related to certain neuropsychological disorders., F. Jagla, M. Jergelová, I. Riečanský., and Obsahuje bibliografii a bibliografické odkazy
To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H 2 ) groups. Treatment with saturated hydrogen saline prolonged the median su rvival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)- α and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF- κ B), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen- activated protein kinase (MAPK), NF- κ B, and Smac may contribute to saturated hydrogen saline-mediated liver protection., X.-F. Xu, J. Zhang., and Obsahuje seznam literatury
Given the potential clinical benefit of inhibiting Na+/Ca2+ exchanger (NCX) activity dur ing myocardial ischemia reperfusion (I/R), pharmacological approaches have been pursued to both inhibit and clarify the importance of this exchanger. SEA0400 was reported to have a potent NCX selectivity. Thus, we examined the effect of SEA0400 on NCX currents and I/R induced intracellular Ca2+ overload in mouse ventricular myocytes using patch clamp techniques and fluorescence measurements. Ischemia significantly inhibited inward and outward NCX current (from -0.04±0.01nA to 0 nA at -100 mV; from 0.23±0.08 nA to 0.11±0.03 nA at +50 mV, n=7). Subsequent reperfusion not only restored the current rapidly but enhanced the current amplitude obviously, especially the outward currents (from 0.23±0.08 nA to 0.49±0.12 nA at +50 mV, n=7). [Ca2+]i, expressed as the ratio of Fura-2 fluorescence intensity, increased to 138±7 % (P<0.01) during ischemia and to 210±11 % (P<0.01) after reperfusion. The change of NCX current and the increase of [Ca 2+]i during I/R can be blocked by SEA0400 in a dose-dependent manner with an EC50 value of 31 nM and 28 nM for the inward and outward NCX current, respectively. The results suggested that SEA0400 is a potent NCX inhibitor, which can protect mouse cardiac myocytes from Ca2+ overload during I/R injuries., J. Wang, Z. Zhang, Y. Hu, X. Hou, Q. Cui, Y. Zang, C. Wang., and Obsahuje bibliografii a bibliografické odkazy