« Previous |
81 - 86 of 86
|
Next »
Number of results to display per page
Search Results
82. The protective influence of selenium on oxidant disturbances in brain of rats exposed to lithium
- Creator:
- Kiełczykowska, M., Kocot, J., Lewandowska, A., Żelazowska, R., and Musik, I.
- Format:
- print, bez média, and svazek
- Type:
- article, články, model:article, and TEXT
- Subject:
- Fyziologie člověka a srovnávací fyziologie, selen, lithium, oxidační stres, mozek, selenium, oxidative stress, brain, rats, 14, and 612
- Language:
- English
- Description:
- For more than sixty years lith ium carbonate has been used in medicine. However, during its administration different side effects including oxidative stress can occur. Selenium belongs to essential elements possessing antioxidant properties. This study aimed at evaluating if selenium co uld be used as a protective adjuvant in lithium therapy. The experiment was performed on four groups of Wistar rats: I (control), II (Li), III (Se), IV (Li + Se) treated with saline, lithium carbonate (2.7 mg Li/kg b.w.), sodium selenite (0.5 mg Se/kg b.w.) and lithium carbonate (2.7 mg Li/kg b.w.) + sodium selenite (0.5 mg Se/kg b.w.), respectively. All substances were administered as water solutions by stomach tube for 3 or 6 weeks. Catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GP x) as well as malonyldialdehyde (MDA) were determined in brain homogenates. Lithium slightly enhanced MDA and depressed CAT and SOD after 6 weeks as well as GPx after 3 weeks. Selenium co -administration show ed tendency to restore the disturbed parameters. Selenium alone and given with lithium significantly increased GPx vs. Li- treated group after 3 weeks. Having regarded the outcomes of this study, the research on application of selenium during lithium treatment seems to be worth continuation., M. Kiełczykowska, J. Kocot, A. Lewandowska, R. Żelazowska, I. Musik., and Obsahuje bibliografii
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
83. The relationship between glycemia, insulin and oxidative stress in hereditary hypertriglyceridemid rat
- Creator:
- Michal Žourek, Pavlína Kyselová, Jiří Mudra, Michal Krčma, Zdeněk Jankovec, Silvie Lacigová, Jakub Víšek, and Zdeněk Rušavý
- Format:
- print, bez média, and svazek
- Type:
- article, články, model:article, and TEXT
- Subject:
- Biochemie. Molekulární biologie. Biofyzika, diabetologie, oxidační stres, inzulín, potkan, diabetology, oxidative stress, insulin, Rattus norvegicus, clamp, 2, and 577
- Language:
- English
- Description:
- The aim of this study was to determine the effects of insulin infusion on oxidative stress induced by acute changes in glycemia in non-stressed hereditary hypertriglyceridemic rats (hHTG) and Wistar (control) rats. Rats were treated with glucose and either insulin or normal saline infusion for 3 hours followed by 90 min of hyperglycemic (12 mmol/l) and 90 min of euglycemic (6 mmol/l) clamp. Levels of total glutathione (GSH), oxidized glutathione (GSSG) and total antioxidant capacity (AOC) were determined to assess oxidative stress. In steady states of each clamp, glucose infusion rate (GIR) was calculated for evaluation of insulin sensitivity. GIR (mg.kg-1.min-1) was significantly lower in hHTG in comparison with Wistar rats; 25.46 (23.41 - 28.45) vs. 36.30 (27.49 - 50.42) on glycemia 6 mmol/l and 57.18 (50.78 - 60.63) vs. 68.00 (63.61 - 85.92) on glycemia 12 mmol/l. GSH/GSSG ratios were significantly higher in hHTG rats at basal conditions. Further results showed that, unlike in Wistar rats, insulin infusion significantly increases GSH/GSSG ratios in hHTG rats: 10.02 (9.90 - 11.42) vs. 6.01 (5.83 - 6.43) on glycemia 6 mmol/l and 7.42 (7.15 - 7.89) vs. 6.16 (5.74 - 7.05) on glycemia 12 mmol/l. Insulin infusion thus positively influences GSH/GSSG ratio and that way reduces intracellular oxidative stress in insulin-resistant animals., M. Žourek, P. Kyselová, J. Mudra, M. Krčma, Z. Jankovec, S. Lacigová, J. Víšek, Z. Rušavý., and Obsahuje bibliografii a bibliografické odkazy
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
84. The role of iron in the pathogenesis of atherosclerosis
- Creator:
- Pavel Kraml
- Format:
- print, bez média, and svazek
- Type:
- article, články, journal articles, model:article, and TEXT
- Subject:
- Fyziologie člověka a srovnávací fyziologie, železo, železivce, oxidační stres, záněty, ateroskleróza, iron, ironstones, oxidative stress, inflammations, atherosclerosis, macrophages, 14, and 612
- Language:
- English
- Description:
- Ferritin and increased iron stores first appea red on the list of cardiovascular risk factors more than 30 years ago and their causal role in the pathogenesis of atherosclerosis has been heavily discussed since the early 1990s. It seems that besides traditional factors such as hyperlipoprotein emia, hyp ertension, diabetes mellitus, obesity, physical inactivity, smoking and family history, high iron stores represent an additional parameter that could modify individual cardiovascular risk. The role of iron in the pathogenesis of atherosclerosis was origina lly primarily associated with its ability to cataly ze the formation of highly reactive free oxygen radicals and the oxidation of atherogenic lipoproteins. Later, it became clear that the mechanism is more complex. Atherosclerosis is a chronic fibroprolife rative inflammatory process and iron, through increased oxidation stress as well as directly, can control both native and adaptive immune responses. Within the arterial wall, iron affects all of the cell types that participate in the atherosclerotic proces s (monocytes/macrophages, endothelial cells, vascular smooth muscle cells and platelets). Most intracellular iron is bound in ferritin, whereas redox-active iron forms labile iron pool. Pro-inflammatory and anti-inflammatory macrophages within arterial plaque differ with regard to the amount of intracellular iron and most probably with regard to their labile iron pool. Yet, the relation between plasma ferritin and intracellular labile iro n pool has not been fully clarified. Data from population studies document that the consumption of meat and lack of physical activity contribute to increased iron stores. Patients with hereditary h emochromatosis, despite extreme iron storage, do not show i ncreased manifestation of atherosclerosis probably due to the low expression of hepcidin in macrophages., P. Kraml., and Obsahuje bibliografii
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
85. Ultraviolet-B radiation (280-315 nm) invoked antioxidant defence systems in Vigna unguiculata (L.) Walp. and Crotalaria juncea L.
- Creator:
- Selvakumar, V.
- Format:
- bez média and svazek
- Type:
- model:article and TEXT
- Subject:
- ascorbate-glutathione cycle, ascorbate oxidase and peroxidase, catalase, dehydroascorbate reductase, glutathione transferase, monodehydroascorbate reductase, oxidative stress, peroxidase, and superoxide dismutase
- Language:
- Multiple languages
- Description:
- A crop legume Vigna unguiculata L. (Walp.) and a wild legume Crotalaria juncea L. were evaluated for their relative responses to the oxidative stress injury induced by various doses of UV-B radiation (UV-B, 280-315 nm; 0, 1.0, 1.4, 4.7, and 6.0 kJ m-2 d-1). A dose-dependent damage in lipid peroxidation was determined as an index of membrane injury caused by UV-B. The impact was significantly higher in V. unguiculata than in C. juncea. The specific activities of superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase increased directly proportional to UV-B doses. However, the activities of these enzymes were significantly higher in V. unguiculata than in C. juncea indicating that V. unguiculata was inflicted with more severe oxidative stress injury under UV-B. In C. juncea the glutathione reductase and ascorbate oxidase activities were 35 and 40 % greater than in V. unguiculata, respectively. Further, the non-enzymatic antioxidants ascorbate and glutathione, and their reduced/oxidizes ratios in C. juncea were much greater than V. unguiculata indicating C. juncea has an inherently greater antioxidative potential than V. unguiculata. Thus C. juncea is better adapted to oxidative stress than V. unguiculata by means of efficient cellular antioxidant mechanisms helping to combat the photooxidative stress injury elicited by UV-B.
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
86. Why is it better to produce coffee seedlings in full sunlight than in the shade? A morphophysiological approach
- Creator:
- Moraes, G. A. B. K., Chaves, A. R. M., Martins, S. C. V., Barros, R. S., and DaMatta, F. M.
- Format:
- bez média and svazek
- Type:
- model:article and TEXT
- Subject:
- botanika, botany, biomass allocation, Coffea, growth, oxidative stress, photoinhibition, photosynthesis, and xanthophylls
- Language:
- Multiple languages
- Description:
- The coffee plant is native to shaded environments and its seedlings are often produced in shaded nurseries. However, some nursery managers, in an effort to improve the acclimation of seedlings to field conditions after transplantation, produce seedlings in full sun exposure. In this study, the morphological and physiological parameters of arabica coffee (Coffea arabica) seedlings produced in full sun (T1) and in shade (T2) were examined. The biomass accumulation and relative growth rate of T1 and T2 seedlings were similar. The T1 seedlings had less biomass allocation to shoots, a lower leaf mass ratio and a lower leaf area ratio; however, they had a greater net assimilation rate (rate of increase in plant mass per unit leaf area), which was associated with a greater net photosynthetic rate. There were no alterations in the concentrations of total chlorophylls or in the chlorophyll a/b ratio when comparing T1 and T2 seedlings. No indications of photoinhibition or photooxidative damage were observed in the T1 plants, which were shown to have a more robust antioxidant system than the T2 plants. Seedlings transferred from shade to full sun (T3) were not capable of utilising the incident extra light to fix CO2. These seedlings showed a remarkable nocturnal retention of zeaxanthin and a significantly increased deepoxidation state of the xanthophyll cycle, even at predawn, but the activity of antioxidant enzymes was lower than in the T1 and T2 plants. Despite the acclimation capacity of T3 seedlings to the new light environment, they exhibited chronic photoinhibition and considerable photooxidative damage throughout the seven days following the transfer to full sun exposure. We further discuss the practical implications of producing coffee seedlings in full sunlight and under shade. and G. A. B. K. Moraes ... [et al.].
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public