Acute liver failure (ALF) is a clinical syndrome resulting from widespread damage of hepatocytes, with extremely high mortality rate. Urgent orthotopic liver transplantation was shown to be the most effective therapy for ALF but this treatment option is limited by sca rcity of donor organs. Therefore, hepatocyte transplantation (Tx) has emerged as a new therapeutical measure for ALF, however, the first clinical applications proved unsatisfactory. Apparently, extensive preclinical studies are needed. Our aim was to exami ne if hepatocytes isolated from transgenic “firefly luciferase” Lewis rats into the recipient liver would attenuate the course of thioacetamide (TAA) -induced ALF in Lewis rats. Untreated Lewis rats after TAA administration showed a profound decrease in sur vival rate; no animal survived 54 h. The rats showed marked increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, in plasma level of bilirubin and ammonia (NH 3 ), and in a significant decrease in plasma albumin. Hepatocyte Tx attenuated the course of TAA -induced ALF Lewis rats which was reflected by improved survival rate and reduced degree of liver injury showing as lowering of elevated plasma ALT, AST, NH 3 and bilirubin levels and increasing plasma albumin. In addition, bioluminescence imaging analyses have shown that in the TAA- damaged livers the transplanted hepatocyte were fully viable throughout the experiment. In conclusion, the results show that hepatocyte Tx into the liver can attenuate the course of TAA- induced ALF in Lewis rats. This information should be considered in attempts to develop new therapeutic approaches to the treatment of ALF., E. Koblihová, O. Lukšan, I. Mrázová, M. Ryska, L. Červenka., and Obsahuje bibliografii
Hepatoprotective properties of rooibos tea (Aspalathus linearis) were investigated in a rat model of liver injury induced by carbon tetrachloride (CCl4). Rooibos tea, like N-acetyl-L-cysteine which was used for the comparison, showed histological regression of steatosis and cirrhosis in the liver tissue with a significant inhibition of the increase of liver tissue concentrations of malondialdehyde, triacylglycerols and cholesterol. Simultaneously, rooibos tea significantly suppressed mainly the increase in plasma activities of aminotransferases (ALT, AST), alkaline phosphatase and billirubin concentrations, which are considered as markers of liver functional state. The antifibrotic effect in the experimental model of hepatic cirrhosis of rats suggests the use of rooibos tea as a plant hepatoprotector in the diet of patients with hepatopathies., O. Uličná, M. Greksák, O. Vančová, L. Zlatoš, Š. Galbavý, P. Božek, M. Nakano., and Obsahuje bibliografii
D-galactosamine is a hepatotoxic agent, which induces diffuse injury of liver tissue followed by the regeneration process. Our data showed a high increase of serum aminotransferases after D-galactosamine administration, which indicates a high extent of liver injury. When lipid emulsion was applied immediately after D-galactosamine, the increase of serum aminotransferases was greatly reduced. In addition, the decrease of the cytochrome c oxidase activity induced by D-galactosamine was not observed after lipid emulsion administration and the increase of total liver oxidative capacity in the regeneration period due to activated mitochondrial biogenesis was accelerated. All these findings indicate a protective effect of lipid emulsion administration against D-galactosamine toxicity., R. Ferenčíková, Z. Červinková, Z. Drahota., and Obsahuje bibliografii
Hepcidin is a key regulator of iron homeostasis, while hemojuvelin is an important component of the hepcidin regulation pathway. It has been recently proposed that soluble hemojuvelin, produced from hemojuvelin by the protease furin, decreases hepcidin expression. The aim of the presented study was to examine the downregulation of hepcidin by chronic bleeding in hemojuvelin-mutant mice. Male mice with targeted disruption of the hemojuvelin gene (Hjv-/- mice) and wild-type littermates were maintained on an iron-deficient diet and subjected to weekly phlebotomies for 7 weeks. Gene expression was examined by real-time PCR. In wild type mice, repeated bleeding decreased hepcidin mRNA by two orders of magnitude. In Hjv-/- mice, basal hepcidin expression was low; however, repeated bleeding also decreased hepcidin mRNA content by an order of magnitude. Phlebotomies reduced hepatic iron overload in Hjv-/- mice by 80 %. Liver and muscle furin mRNA content was not significantly changed. No effect on hepatic Tmprss6 mRNA content was observed. Results from the study indicate that soluble hemojuvelin is not the sole factor responsible for hepcidin downregulation. In addition, the presented data suggest that, under in vivo conditions, tissue hypoxia does not transcriptionally regulate the activity of furin or TMPRSS6 proteases., J. Krijt ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Hepcidin, a key regulator of iron metabolism, plays a crucial role in the pathogenesis of anemia of chronic disease. Although it is produced mainly in the liver, its recently described expression in adipose tissue has been shown to be enhanced in massive obesity due to chronic low-grade inflammation. Our objective was to study the changes in hepcidin expression in adipose tissue during acute-phase reaction. We measured hepcidin mRNA expression from isolated subcutaneous and epicardial adipose tissue at the beginning and at the end of the surgery. The expression of mRNAs for hepcidin and other iron-related genes (transferrin receptor 1, divalent metal transporter 1, ferritin, ferroportin) were measured by real-time RT-PCR. Hepcidin expression significantly increased at the end of the surgery in subcutaneous but not in epicardial adipose tissue. Apart from the increased levels of cytokines, the parameters of iron metabolism showed typical inflammation-induced changes. We suggest that acute inflammatory changes could affect the regulation of hepcidin expression in subcutaneous adipose tissue and thus possibly contribute to inflammation-induced systemic changes of iron metabolism., M. Vokurka ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Heterologous expression of Kir channels offers a tool to modulate excitability of neurons which provide insight into Kir channel functions in general. Inwardly-rectifying K+ channels (Kir channels) are potential candidate proteins to hyperpolarize neuronal cell membranes. However, heterologous expression of inwardly-rectifying K+ channels has previously proven to be difficult. This was mainly due to a high toxicity of the respective Kir channel expression. We investigated the putative role of a predominantly glial-expressed, weakly rectifying Kir channel (Kir4.1 channel subunit; KCNJ10) in modulating electrophysiological properties of a motoneuron-like cell culture (NSC-34). Transfection procedures using an EGFP-tagged Kir4.1 protein in this study proved to have no toxic effects on NSC-34 cells. Using whole cell-voltage clamp, a substantial increase of inward rectifying K+ currents as well as hyperpolarization of the cell membrane was observed in Kir4.1-transfected cells. Na+ inward currents, observed in NSC-34 controls, were absent in Kir4.1/EGFP motoneuronal cells. The Kir4.1-transfection did not influence the NaV1.6 sodium channel expression. This study demonstrates the general feasibility of a heterologous expression of a weakly inward-rectifying K+ channel (Kir4.1 subunit) and shows that in vitro overexpression of Kir4.1 shifts electrophysiological properties of neuronal cells to a more gliallike phenotype and may therefore be a candidate tool to dampen excitability of neurons in experimental paradigms., J. Zschüntzsch, ... [et al.]., and Obsahuje seznam literatury
Hypoxia-inducible factors (HIFs) are transcription factors controlling energy, iron metabolism, erythropoiesis, and development. Dysregulation of these proteins contributes to tumorigenesis and cancer progression. Recent findings revealed the important role of HIFs in the pathogenesis of neuroendocrine tumors, especially pheoch romocytoma (PHEO) and paraganglioma (PGL). PHEOs and PGLs are catecholamine- producing tumors arising from sympathetic- or parasympathetic- derived chromaffin tissue. To date, eighte en PHEO/PGL susceptibility genes have been identified. Based on the main signaling pathways, PHEOs/PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Recent data suggest that both clusters are interconnected via the HIF signaling and its role in tumorigenesis is supported by newly described somatic and germline mutations in HIF2A gene in patients with PHEOs/PGLs associated with polycythemia, and in some of them also with somatostatinoma. Moreover, HIF α signaling has also been sh own to be upregulated in neuroendocrine tumors other than PHEO/PGL. Some of these tumors are components of hereditary tumor syndromes which can be associated with PHEO/PGL, but also in ileal carcinoids or melanoma. HIF signaling appears to be one of the crucial players in tumorigenesis, which could suggest new therapeutic approaches for treatment of neuroendocrine tumors., I. Jochmanová, T. Zelinka, J. Widimský Jr., K. Pacak., and Obsahuje bibliografii
Increased plasma total cysteine (tCys) has been associated with obesity and metabolic syndrome in human and some animal studies but the underlying mechanisms remain unclear. In this study, we aimed at evaluating the effects of high cysteine diet administered to SHR-CRP transgenic rats, a model of metabolic syndrome and inflammation. SHR-CRP rats were fed either standard (3.2 g cystine/kg diet) or high cysteine diet (HCD, enriched with additional 4 g L-cysteine/kg diet). After 4 weeks, urine, plasma and tissue samples were collected and parameters of metabolic syndrome, sulfur metabolites and hepatic gene expression were evaluated. Rats on HCD exhibited similar body weights and weights of fat depots, reduced levels of serum insulin, and reduced oxidative stress in the liver. The HCD did not change concentrations of tCys in tissues and body fluids while taurine in tissues and body fluids, and urinary sulfate were significantly increased. In contrast, betaine levels were significantly reduced possibly compensating for taurine elevation. In summary, increased Cys intake did not induce obesity while it ameliorated insulin resistance in the SHR-CRP rats, possibly due to beneficial effects of accumulating taurine., Jakub Krijt, Jitka Sokolová, Jan Šilhavý, Petr Mlejnek, Jan Kubovčiak, František Liška, Hana Malínská, Martina Hüttl, Irena Marková, Michaela Křížková, Martha H. Stipanuk, Tomáš Křížek, Tamas Ditroi, Peter Nagy, Viktor Kožich, Michal Pravenec., and Obsahuje bibliografii
Pathogenesis of adenine-induced chronic renal failure may involve inflammatory, immunological and/or oxidant mechanisms. Gum arabic (GA) is a complex po lysaccharide that acts as an anti-oxidant which can modulate inflammatory and/or immunological processes. Therefore, we tested here the effect of GA treatment (15 % in the drinking water for 4 weeks) in plasma and urine of rats, on a novel cytokine that has been shown to be pro-inflammatory, viz, DNA-binding high-mobility group box-1 protein (HMGB1). Adenine (0.75 % in the feed, 4 weeks) significantly increased indoxyl sulphate, urea and creatinine concentrations in plasma, an d significantly decreased the creatinine clearance. GA significantly abated these effects. The concentrations of HMGB1 in urine before the start of the experiment were similar in all four groups. However, 24 h after the last treatment, adenine treatment increased significantly the concentration of HMGB1 when compared with the control. GA treatment did not affect the HMGB1 concentration in urine. Moreover, the concentration of HMGB1 in plasma obtained 24 h after the last treatment in rats treated with adenine was drastically reduced compared with the control group. This may explain its significant rise in urine. In conclusion, HMGB1 can be considered a potentially useful biomarker in adenine induced CRF and its treatment., B. H. Ali, M. Al Za'abi, A. Al Shukaili, A. Nemmar., and Obsahuje bibliografii
In this work, design and synthesis of high-molecular-weight N-(2- hydroxypropyl)methacrylamide-based polymer drug delivery systems tailored for cancer therapy is summarized. Moreover, the influence of their architecture on tumor accumulation and in vivo anti-cancer efficacy is discussed. Mainly, the high-molecularweight delivery systems, such as branched, grafted, multi-block, star-like or micellar systems, with molecular weights greater than the renal threshold are discussed and reviewed in detail., L. Kostka, T. Etrych., and Obsahuje bibliografii