Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption., G.-L. Tang, X.-Y. Li, L.-S. Lin, Y. Hu, F.-J. Zeng., and Obsahuje seznam literatury
Determining the genomic structure of diapause-associated transcripts (DAT) -2 and -3 led to the isolation of four novel miniature subterminal inverted repeat-like elements (MSITE): Mild-1, -2, -3 and -4. Mild-1a is inserted within the first intron of diapause protein-1. Mild-1a is 284 bp in length, has a 14 bp target site duplication and three sets of subterminal inverted repeats. The second element, Mild-2a, is inserted within the 3' terminus of Mild-1a. Mild-2a is 29 bp long with a 3 bp target site duplication and one set of subterminal inverted repeats. Using primers based on Mild-1, genomic clones were developed leading to the isolation of Mild-3a. Mild-3a shares 60% identity with Mild-1a, is 253 bp long, has a 9 bp target site duplication and has one set of subterminal inverted repeats. Mild-4a is inserted within the first intron of DAT-2 and is 227 bp in length with a 12 bp target site duplication. Mild-4a appears to be an intermediate form between a miniature inverted repeat transposable element (MITE) and a MSITE because the 5' inverted repeat is terminal (i.e., adjacent to the target site duplication) as in MITEs, but the 3' inverted repeat is separated (in this case, by 33 bp) from the 3' target site duplication as in MSITEs. The target site duplications of Mild-1, -3 and -4 families share a common conserved core of AATTT. All of the transposable elements are AT rich and are able to form hairpin structures. Within the promoter region of DAT-3 is a 163 bp sequence (Mild-1b) that shares 77% identity to the 3' terminus of Mild-1a. Mild-4a has identity to 25 and 53 bp regions within the promoter of the juvenile hormone esterase B gene. Southern blot analysis revealed the presence of Mild-1 and -3 elements in both Leptinotarsa decemlineata and Leptinotarsa juncta indicating that these elements are ancestral to the L. decemlineata, L. juncta separation. and George D. Yocum, Michelle J. Toutges, Richard L. Roehrdanz, Preston J. Dihle.
Betasyringophiloidus Skoracki, 2011 is a genus of quill mites (Prostigmata: Syringophilidae) that is believed to contain mono-, steno- and polyxenous parasites associated with a wide range of passerine birds (Passeriformes) across the world. In this work we applied the DNA-barcode marker (mitochondrial cytochrome c oxidase subunit I gene fragment, COI) to verify whether Betasyringophiloidus schoeniclus (Skoracki, 2002) and Betasyringophiloidus seiuri (Clark, 1964) are actual steno- and polyxenous species associated with the currently recognised host ranges, or their populations are highly host-specific, cryptic species. Our results revealed that a population living on the Tristram's bunting Emberiza tristrami Swinhoe (Emberizidae) in Russia, so far classified as B. schoeniclus, is a new cryptic species Betasyringophiloidus emberizae sp. nov. Both topologies of the neighbor-joining and maximum likelihood phylogenetic trees as well as genetic distance (11.9% Kimura 2-parameter distance) (K2P) support species status of the mite population from E. tristrami. The same data support previously established conspecific status of B. seiuri found on the ovenbird Seiurus aurocapilla (Linnaeus) (Parulidae) (type host) and the northern waterthrush Parkesia noveboracensis (Gmelin) (Parulidae) and expand its range with a population found on a new host species Icterus pustulatus (Wagler) (Icteridae) with intraspecific K2P distance up to 1.9% and interpopulation distances ranging from 1.3 to 3.1%., Eliza Glowska, Lukasz Broda, Miroslawa Dabert., and Obsahuje bibliografii
Vitamin D status and the relationship between serum 25(OH) vitamin D concentrations and the components of insulin resistance were examined in 120 patients with chronic kidney disease stage 2 and 3. Insulin sensitivity/resistance was calculated by the quantitative insulin sensitivity check index (QUICKI). In this analysis, the prevalence of insulin resistance was 42 %. Only 17 % of patients had serum 25(OH) vitamin D concentration in the recommended range ( ≥ 30 ng/ml), 42 % suffered from vitamin D insufficiency and 41 % had moderate vitamin D deficiency. Insulin resistance significantly correlated with serum 25(OH)D and 1,25(OH) 2 D concentrations, renal function and protein excretion rate. Our results support the increasing evidence that vitamin D deficiency may be one of the factors participating in the development of insulin resistance already in the early stages of chronic kidney disease. and K. Štefíková ... [et al.].
Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress and cause damage in plants. On the other hand, studies have shown that salicylic acid (SA) induced resistance to environmental stresses in plants. In this research, the effects of ethylene on chlorophyll (Chl), carotenoid (Car), anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene production in leaves of canola pretreated with SA were studied. The plants were grown in pots until they have four leaves. Leaves were sprayed for two days with three different concentrations of SA (0, 0.5, and 1 mM). The plants were treated for three days with three concentrations of ethylene (0, 50, and 100 ppm). At the end of the ethylene treatments, all examined parameters were measured. The results showed that the ethylene treatments induced lipid peroxidation, while SA mitigated this effect. The ethylene treatment lowered significantly Chl and Car contents and anthocyanin accumulation, but SA alleviated these effects. SA induced an increase in ascorbic acid content in canola plants after the ethylene treatments. Therefore, we concluded that SA played an important role in the alleviation of damages caused by stress conditions. and M. M. Tirani, F. Nasibi, Kh. M. Kalantari.
Galanin (GAL) is suggested to be a neuropeptide involved in pain transmission. In this study we tried to determine, whether the increase of GAL concentration in brain cells affects impulse transmission between the motor centers localized in the vicinity of the third and fourth cerebral ventricles. The experiments were carried out on rats under chloralose anesthesia. The study objectives were realized using the method allowing to record the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation during the perfusion of the cerebral ventricles with solutions containing tested compounds. Perfusion of the cerebral ventricles with GAL concentration-dependently inhibited the ETJ amplitude. The antinociceptive effect of GAL was blocked by a galanin receptor antagonist, galantide (GLT) and by opioid antagonists: non-selective naloxone (Nal) and μ-selective β-funaltrexamine (β-FNA). In contrast, a δ-opioid receptor antagonist, naltrindole (NTI) or the κ-opioid receptor antagonist, nor-binaltrophimine (nor-BNI) did not inhibit the effect of GAL. The antinociceptive effect of GAL was more pronounced when GAL was perfused in combination with other neuropeptides/neurohormones, such as endomorphin-2 (EM-2), vasopressin (AVP) and oxytocin (OT). The present results demonstrate that in the orofacial area analgesic activity is modulated by GAL, OT and AVP and that EM-2-induced antinociception involves GAL., M. Zubrzycka, A. Janecka., and Obsahuje bibliografii a bibliografické odkazy
Elevated atmospheric CO2 concentration [CO2] and the change of water distribution in arid and semiarid areas affect plant physiology and ecosystem processes. The interaction of elevated [CO2] and drought results in the complex response such as changes in the energy flux of photosynthesis. The performance of photosystem (PS) II and the electron transport were evaluated by using OJIP induction curves of chlorophyll a fluorescence and the PN-Ci curves in the two-factor controlled experiment with [CO2] of 380 (AC) or 750 (EC) [μmol mol-1] and water stress by 10% polyethylene glycol 6000. Compared to water-stressed maize (Zea mays L.) under AC, the EC treatment combined with water stress decreased the number of active reaction centers but it increased the antenna size and the energy flux (absorbed photon flux, trapping flux, and electron transport flux) of each reaction center in PSII. Thus, the electron transport rate was enhanced, despite the indistinctively changed quantum yield of the electron transport and energy dissipation. The combination of EC and the water-stress treatment resulted in the robust carboxylation rate without elevating the saturated photosynthetic rate (Pmax). This study demonstrated that maize was capable of transporting more electrons into the carboxylation reaction, but this could not be used to increase Pmax under EC., Y. Z. Zong, W. F. Wang, Q. W. Xue, Z. P. Shangguan., and Obsahuje bibliografii
a1_We compared the interactive effects of temperature and light intensity on growth, photosynthetic performance, and antioxidant enzyme activity in Zizania latifolia Turcz. plants in this study. Plants were grown under field (average air temperature 9.6-25°C and average light intensity 177-375 W m-2) or greenhouse (20-32°C and 106-225 W m-2) conditions from the spring to the early summer. The results indicated that greenhouse-grown plants (GGP) had significantly higher plant height, leaf length, and leaf width, but lower leaf thickness and total shoot mass per cluster compared with field-grown plants (FGP). Tiller emergence was almost completely suppressed in GGP. Significantly higher chlorophyll (Chl) content and lower Chl a/b ratio were observed in GGP than in FGP. From 4 to 8 weeks after treatment (WAT), net photosynthetic rate (PN) was significantly lower in FGP than in GGP. However, from 9 to 12 WAT, PN was lower in GGP, accompanied by a decrease in stomatal conductance (gs) and electron transport rate (ETR) compared with FGP. Suppressed PN in GGP under high temperature combined with low light was also indicated by photosynthetic photon flux density (PPFD) response curve and its diurnal fluctuation 10 WAT. Meanwhile, ETR in GGP was also lower than in FGP according to the ETR - photosynthetically active radiation (PAR) curve. The results also revealed that GGP had a lower light saturation point (LSP) and a higher light compensation point (LCP). From 4 to 8 WAT, effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qP), and ETR were slightly lower in FGP than in GGP. The activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), superoxide dismutase (SOD), and malondialdehyde (MDA) content were significantly higher from 4 to 8 WAT, but lower from 10 to 12 WAT in FGP., a2_However, catalase (CAT) activity was significantly lower in FGP from 4 to 8 WAT. Our results indicated that the growth and photosynthetic performance of Z. latifolia plants were substantially influenced by temperature, as well as light intensity. This is helpful to understand the physiological basis for a protected cultivation of this crop., N. Yan ... [et al.]., and Obsahuje bibliografii
Příspěvek se věnuje způsobu života čichavce líbajícího (Helostoma temminkii), jednoho ze zajímavých druhů labyrintních ryb. Popisuje způsob jejich života a také jejich využití. Jde o sladkovodní konzumní ryby, jejichž domovinou je jihovýchodní Asie. Své místo zaujaly také v akvaristice. Málo známý je i zajímavý způsob rozmnožování čichavce líbajícího chovaného v zajetí, který zachycují fotografické záběry při nočním tření., This article describes lifestyle and the use of the Kissing Gourami (Helostoma temminkii), one of the labyrinth fish. These edible freshwater fish native to south-east Asia are occasionally seen in aquaristics. The interesting way in which the Kissing Gourami breeds in captivity has only rarely been documented by photos because of its night time spawning., and Jaroslav Eliáš.
Leptin is a hormone primarily secreted by adipocytes and participating in the regulation of food intake and energy expenditure. Its blood levels usually correlate with adiposity. The secretion of this hormone is affected, among others, by food consumption, insulin, fasting and cold exposure. Regulation of leptin secretion depends on many intracellular events. It is known that the activation of mTOR (the mamma lian target of rapamycin) as well as increase in ATP and malonyl-CoA content in adipocytes enhance secretion of leptin. The rise in intracellular cAMP and fatty acids is thought to evoke the opposite effect. Moreover, the undisturbed action of endogenous adenosine in adipocytes and the proper intracellular Ca2+ concentration in these cells were also found to have an important function in leptin release. The role of mTOR, ATP, cAMP, fatty acids, malonyl-CoA, adenosine and Ca2+ in the regulation of leptin secretion from adipocytes is discussed., T. Szkudelski., and Obsahuje bibliografii a bibliografické odkazy