The relative proportions of free amino acids as well as the amino acid compositions of hydrolysed unprecipitated peptides and hydrolysed whole carcasses were quantified for two aphid species: the gall-dwelling social aphid Pemphigus spyrothecae and the pea aphid Acyrthosiphon pisum. The whole-tissue amino acid profiles of the two taxonomically distant species had a surprisingly high level of correspondence. In contrast, when comparing the A. pisum profiles obtained in the current study to those obtained in an earlier study, major differences were identified. It is concluded that there are good prospects for developing an artificial diet for P. spyrothecae. There may also exist considerable scope for tailoring the existing diets of A. pisum to suit specialised populations which develop poorly on the standard diet. The amino acid profile of P. spyrothecae is the first such profile that has been reported for a gall-forming aphid.
Aphidius ervi Haliday is a parasitoid of natural populations of both Acyrthosiphon pisum (Harris) on alfalfa and Sitobion avenae (Fabricius) on wheat in Chile. In this study the performance of the aphid parasitoid on both host species was evaluated. Regardless of origin, both females and males of A. ervi were significantly smaller when reared on S. avenae than on A. pisum. Males and females of A. ervi reared on S. avenae on wheat also took significantly longer to develop than when reared on A. pisum. There was no significant difference in the sex ratio of the parasitoid when reared on these two host aphids. Survival of parasitoids from the A. pisum - alfalfa system was significantly lower when reared on S. avenae relative to those reared on A. pisum, but no significant difference in survival on both hosts was detected in parasitoids from the S. avenae - wheat system. Behaviour of parasitoid females during oviposition, such as frequency of encounters, number of attacks and stabbings of host aphids, were significantly higher in the A. pisum - A. ervi interaction than in the S. avenae - A. ervi interaction, regardless of the origin of the parasitoid. Aphid defensive reactions such as kicking or production of cornicle secretion, were significantly higher in the A. pisum - A. ervi than the S. avenae - A. ervi interaction. The results are discussed in relation to the effect of host quality and host aphid body size on parasitoid development.
The aphid alarm pheromone is known to trigger wing induction in pea aphids (Acyrthosiphon pisum). In reaction to alarm pheromone, aphids drop off the plant or walk away. While searching for a new feeding site they repeatedly encounter other members of the aphid colony and this increased contact rate is assumed to be important for wing induction ("pseudo-crowding" hypothesis). Because the encounter rate is a function of aphid colony size, wing induction in aphids in the presence of a predator should be a function of the number of aphids on the plant. We placed two, seven or 13 adult pea aphids on bean plants, and exposed the different-sized colonies to synthetic alarm pheromone to test the density-dependence of predator-induced wing induction. The mean percentage of winged morphs among the offspring produced on the plants ranged from 10 to 80 percent and increased both with aphid number and exposure to alarm pheromone. There was no synergy between aphid number and alarm pheromone exposure indicating that both factors are additive. The implications for aphid metapopulation dynamics are discussed.
The aphid parasitoid Aphidius ervi was collected and subsequently reared on Sitobion avenae on wheat or Acyrthosiphon pisum on alfalfa. Parasitoids from both origins were exposed in an olfactometer to alfalfa or wheat volatiles after plant experience (wheat or alfalfa) or after oviposition experience (S. avenae on wheat or A. pisum on alfalfa). The results showed the importance of adult experience, conditioning and innate preferences on the responses of A. ervi toward volatiles and provided a mechanistic explanation to the high prevalence of A. ervi on aphids on cereals and legumes in central Chile.
The relationships between predatory Heteroptera and their potential prey species were investigated during two crop seasons in an inter-mountain area close to the Pyrenees (Iberian Peninsula). Regression was used to analyze the potential numerical responses shown by heteropterans to aphids and other potential prey during alfalfa intercuts (the plant growth period between cuts) of high aphid occurrence. The most abundant heteropterans were Orius spp., Nabis spp. and mirids, and all were present in alfalfa stands throughout the season. Acyrthosiphon pisum was the prevalent species during the 2nd intercut, Therioaphis trifolii during the 4th and Aphis craccivora during the 5th. We performed simple regression analysis between the Orius sp., Nabis sp. and mirids and the prevalent aphid species, forward multiple regression analysis between heteropterans and all possible soft-bodied prey species; and both analyses for coccinellids, as relative aphid predator specialists. The heteropterans responded numerically to A. pisum but not to T. trifolii or A. craccivora. Heteropterans also showed numerical responses to other potential prey (leafhoppers, thrips, and other soft bodied prey) that remained at low densities throughout the season. All these preys may contribute to the presence of heteropterans in alfalfa stands throughout the season. The results suggest that heteropterans may contribute to reduce A. pisum, particularly at the beginning of the growing season, and on other potential pests when they invade or recolonize alfalfa, and may help to delay or prevent the build-up of these pest populations.
Monoctonus paulensis is a solitary parasitoid of several species of aphids, including the pea aphid, Acyrthosiphon pisum. We evaluated host-instar selection by comparing the parasitoid's preference for the four nymphal instars of the pea aphid, presented two at a time in dichotomous choice tests. Females parasitized more, and laid more eggs in, the relatively smaller aphids among those available. This preference was independent of aphid instar: L1 > L2 > L3 > L4. Preference was not influenced by female size or age. Normal and anaesthetized aphids were accepted equally. The total time needed by a female to capture, position, and parasitize an aphid varied among host instars, with fourth instars requiring nearly twice as much time as first, second, and third instars. The probability of an attacked aphid escaping or avoiding parasitism increased with aphid instar, from ~10% in first and second instars to ~50% in fourth instars. Although fourth-instar pea aphids contain more resources for offspring development than smaller counterparts, it may not be profitable for a female to invest opportunity time in attacks on large aphids.
The effects of parasitisation by Aphidius ervi on the feeding behaviour of the aphid Acyrthosiphon pisum were studied. There was progressive increase in the time devoted to xylem ingestion (G waveform) and concomitant decrease in time devoted to phloem ingestion (E2 waveform) in parasitized relative to unparasitized aphids, as the time from parasitisation increased. These changes are interpreted as a way aphids compensate for metabolic changes occurring during parasitisation.
The performance of the aphid-specific fungal pathogen Pandora neoaphidis was studied in relation to changes in herbivore resources for the pea aphid, Acyrthosiphon pisum, on different host plant species. Dose-response bioassays were conducted with A. pisum which had been reared on dwarf bean then inoculated with P. neoaphidis and returned to dwarf bean or inoculated and transferred to field bean, pea or lucerne. The smallest estimated median lethal concentration (LC50) was 7.7 conidia mm-2 (95% confidence interval 5.4-11.2) for aphids returned to dwarf bean, with LC50s of 13.0 (9.2-19.1) and 14.6 (10.2-21.5) conidia mm-2 for aphids transferred to field bean or pea, respectively. The LC50 when aphids were transferred to lucerne [2941.0 conidia mm-2 (237.3-2.1x109)] was greater than for the other three plants. In a subsequent experiment, A. pisum were reared on pea as well as dwarf bean for four generations before bioassays. The LC50 was 7.3 conidia mm-2 (4.4-12.4) for aphids reared and incubated on dwarf bean, compared to 13.3 (8.0-23.9) and 15.3 (8.8-29.9) conidia mm-2 when aphids were transferred between dwarf bean and pea, and vice versa, respectively. The LC50 for aphids reared then incubated on pea plants was 27.9 (15.8-57.3) conidia mm-2. Hence, the virulence of P. neoaphidis, measured by LC50, was greatest when A. pisum was reared and maintained on dwarf bean, the plant used for long-term routine culturing of the aphid in our facilities. In conclusion, virulence of P. neoaphidis was greater on plant species to which A. pisum had become adapted during long-term laboratory rearing. Plant resources may affect infection by P. neoaphidis and the fungal entomopathogen will have a greater impact on aphid herbivores which are not suffering physiological stress related to a change in host plant.
Interclonal variability in the photoperiodic responses of the pea aphid Acyrthosiphon pisum and intraclonal differences between wingless viviparous females (=apterae) and winged viviparous females (=alatae) were studied. In 7 clones collected from peas near St.Petersburg the effect of constant diel photoperiods (from 0L : 24D to 24L : 0D at 20°C) on sexual morph determination and dynamics of morph production were recorded. Apterae of 5 clones and apterae and alatae of 2 clones were studied. The mean and age-dependent fecundity of apterae and alatae were compared. The clones studied in detail can be divided in two groups. The first includes clones that produced winged males and had critical photoperiods for female morph determination around 12L : 12D. The second includes clones with critical photoperiods for female morph determination around 17L : 7D; these clones produced wingless males, and one clone produced only oviparae. The intraclonal differences in the photoperiodic limits for ovipara and male production depended on the clone-specific abundance of males. The shapes of the photoperiodic curves for male production also depended on the clone-specific abundance of males. In short-day conditions alatae produced more oviparae and fewer males, and the range of photoperiods that induced ovipara production in alatae was nearly twice as wide as that in apterae. The photoperiodic limits for ovipara and male production differed for apterae and alatae. The fecundity of alatae was lower, although they reproduced for longer and lived longer than apterae. Both apterae and alatae reproduced more intensively over the first 2 weeks. Apterae and alatae began to produce males at the same age. Because of their late onset of larviposition, the reproductive pause that divides female and male production was obscured in alatae. Both apterae and alatae tended to produce initially and finally batches of viviparous offspring, possibly reflecting age-dependent endogenous changes in the hormonal titres in the parents.
A laboratory experiment was conducted to determine whether the predation strategy of larvae of the aphidophagous silver fly Leucopis annulipes Zetterstedt (Diptera: Chamaemyiidae) is furtive, as are larvae of the aphidophagous midge Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae), or active like aphidophagous ladybird beetle larvae (Coleoptera: Coccinellidae). The impact of L. annulipes larvae on pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), colony disturbance was evaluated and compared with that of the furtive predator A. aphidimyza and the active-searching ladybird beetle Harmonia axyridis Pallas. Results indicate that aphids showed significantly fewer defensive acts (dropping, walking away, wriggling) in the presence of L. annulipes larvae than of ladybird beetle larvae. Furthermore, the impact of L. annulipes larvae on aphid colony disturbance was similar to that of A. aphidimyza and to a control treatment without predators. These results clearly indicate that L. annulipes larvae use a furtive predation strategy.