Cough is a common and important symptom of asthma and allergic rhinitis. Previous experimental evidence has shown enhanced cough sensitivity during early phase of experimental allergic rhinitis in guinea pigs. We hypothesized that airway inflammation during the late phase response after repeated nasal antigen challenge may affect the afferent sensory nerve endings in the larynx and tracheobronchial tree and may also modulate cough response. In the present study we evaluated the cough sensitivity during a period of early and late allergic response in sensitized guinea pigs after repeated nasal antigen challenges. Forty-five guinea pigs were sensitized with ovalbumin (OVA). Four weeks later 0.015 ml of 0.5 % OVA was intranasally instilled to develop a model of allergic rhinitis that was evaluated from the occurrence of typical clinical symptoms. Animals were repeatedly intranasally challenged either by OVA (experimental group) or by saline (controls) in 7-day intervals for nine weeks. Cough was elicited by inhalation of citric acid aerosols. Cough was evaluated at 1 or 3 h after the 6th nasal challenge and 17 or 24 h after the 9th nasal challenge. The cough reflex was significantly increased at 1 and 3 h after repeated nasal challenge in contrast to cough responses evoked at 17 and 24 h after repeated nasal challenge. In conclusion, enhanced cough sensitivity only corresponds to an early allergic response after repeated nasal challenges.
Toxic influence of high oxygen concentration on pulmonary function and structures has been known for many years. However, the influence of high oxygen concentration breathing on defensive respiratory reflexes is still not clear. In our previous experiments, we found an inhibitory effect of 100 % oxygen breathing on cough reflex intensity in healthy guinea pigs. The present study was designed to detect the effects of hyperoxia on cough reflex in guinea pigs with allergic airway inflammation. In the first phase of our experiment, the animals were sensitized with ovalbumin. Thirty-two sensitized animals were used in two separate experiments according to oxygen concentration breathing: 100 % or 50 % oxygen for 60 h continuously. In each experiment, one group of animals was exposed to hyperoxia, another to ambient air. The cough reflex was induced both by aerosol of citric acid before sensitization, then in sensitized animals at 24 h and 60 h of exposition to oxygen/air in awake animals, and by mechanical stimulation of airway mucosa in anesthetized animals just after the end of the experiment. In contrast to 50 % oxygen, 100 % oxygen breathing leads to significant decrease in chemically induced cough in guinea pigs with allergic inflammation. No significant changes were present in cough induced by mechanical stimulation of airways., M. Brozmanová, J. Hanáček, M. Tatár, A. Strapková, P. Szépe., and Obsahuje bibliografii