The function and structure of the ovipositor in Hymenoptera have been studied intensively, although there is a lack of information on the external sheaths. We provide here a contribution on the structure of the external sheaths of the ovipositor of the parasitic wasp Aphidius ervi, in particular the secretory structure is described for the first time. These glands are made up of a large epithelial structure that consists a single layer of large secretory cells that occupy most of the lumen of the valve and belong to gland cell class 1. Based on the different features of the glands, a lubricating and/or host marking function is hypothesized and discussed., Sara Ruschioni, Paola Riolo, Roberto Romani, Donatella Battaglia, Nunzio Isidoro., and Obsahuje bibliografii
The host recognition and acceptance behaviour of two braconid larval parasitoids (Cotesia sesamiae and C. flavipes) were studied using natural stemborer hosts (i.e., the noctuid Busseola fusca for C. sesamiae, and the crambid Chilo partellus for C. flavipes) and a non-host (the pyralid Eldana saccharina). A single larva was introduced into an arena together with a female parasitoid and the behaviour of the wasp recorded until it either stung the larva or for a maximum of 5 min if it did not sting the larva. There was a clear hierarchy of behavioural steps, which was similar for both parasitoid species. In the presence of suitable host larvae, after a latency period of 16-17 s, the wasp walked rapidly drumming the surface with its antennae until it located the larva. After location and antennal examination of the host, which lasted 60-70 s and 30 s, respectively, the parasitoid inserted its ovipositor. Stinging that resulted in successful oviposition usually lasted 5-6 s. In the presence of non-host larvae, the latency period was between 25-70 s, and parasitoids spent significantly more time walking and antennal drumming on larvae without ovipositing. It is likely that these two parasitoid species use their antennae for host recognition, and both their antennae and tarsi for final acceptance of a host for oviposition. In both C. sesamiae and C. flavipes tactile and contact-chemoreception stimuli from the hosts seemed to play a major role in the decision to oviposit.
Monoctonus paulensis is a solitary parasitoid of several species of aphids, including the pea aphid, Acyrthosiphon pisum. We evaluated host-instar selection by comparing the parasitoid's preference for the four nymphal instars of the pea aphid, presented two at a time in dichotomous choice tests. Females parasitized more, and laid more eggs in, the relatively smaller aphids among those available. This preference was independent of aphid instar: L1 > L2 > L3 > L4. Preference was not influenced by female size or age. Normal and anaesthetized aphids were accepted equally. The total time needed by a female to capture, position, and parasitize an aphid varied among host instars, with fourth instars requiring nearly twice as much time as first, second, and third instars. The probability of an attacked aphid escaping or avoiding parasitism increased with aphid instar, from ~10% in first and second instars to ~50% in fourth instars. Although fourth-instar pea aphids contain more resources for offspring development than smaller counterparts, it may not be profitable for a female to invest opportunity time in attacks on large aphids.
Preferences of young caterpillars of three species of Pieris (P. rapae crucivora Boisduval, P. melete Ménétriès, and P. napi japonica Shirôzu) (Lepidoptera: Pieridae) for the upper and lower surfaces of the leaves of their host plants (Brassicaceae) were investigated in the laboratory. On horseradish Armoracia rusticana Gaertn. Mey. et Scherb., which was provided as a common food for three species, second and third instar larvae of the respective species preferred the lower to the upper surface of horizontally placed leaves, irrespective of whether they hatched on the upper or lower surface. First instar larvae seemed to remain on the surface on which they hatched. However, first instar larvae of P. melete on Rorippa indica (L.), a natural food of P. melete in the field, and first instar larvae of P. napi japonica on Arabis flagellosa Miq., a natural food of P. napi japonica, preferred the lower to the upper surface, just as second and third instar larvae did. To elucidate the effects of leaf-surface preference, the percentage parasitism of P. rapae crucivora on Arm. rusticana and Ara. flagellosa by the parasitoid Cotesia glomerata (L.) (Hymenoptera: Braconidae) was investigated. On Arm. rusticana, the percentage parasitism of the larvae on the upper surface was higher than that of larvae on the lower surface. On Ara. flagellosa, however, percentages parasitism were nearly equal on both surfaces. Leaf-surface preference by the larvae of Pieris is discussed in terms of avoidance of parasitism by the parasitoid C. glomerata.
Macrocentrus cingulum is an important polyembryonic endoparasitic wasp that attacks larvae of the Asian corn borer, Ostrinia furnacalis (Guenée) and the European corn borer, O. nubilalis (Hübner). Parasitoids use antennae as the main sensory organ to recognize herbivore-induced plant volatiles as host searching cues. The antennal olfaction proteins, odorant receptors (ORs) and ionotropic receptors (IRs) are involved in olfactory signal transduction pathway as a sensory neuron response. In the present study, we constructed a cDNA library from the male and female antennae for identifying the olfaction-related genes in M. cingulum. For that, we sequenced 3160 unique gene sequences and annotated them with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG ontology (KO). Through the homology search, we identified 9 odorant receptors (ORs), 3 ionotropic receptors (IRs) and 1 odorant binding protein (OBP) genes from the cDNA library sequences. Additionally, the expression patterns of these ORs and IRs in different tissues (antennae, heads, thoraxes, abdomens, and legs) were demonstrated by RT-PCR. The qualitative gene expression analyses showed that most of the OR genes were more highly expressed in female than male antennae; whereas IRs, unlike ORs, were more expressed in various male than females tissues. We are the first to report ORs and IRs in M. cingulum, which should help in deciphering the molecular basis of olfaction system in this wasp., Tofael Ahmed, Tian-Tao Zhang, Zhen-Ying Wang, Kang-Lai He, Shu-Xiong Bai., and Obsahuje bibliografii
After leaving their hosts, the larvae of endoparasitic braconid wasps pupate in cocoons. To determine their investment in cocoon silk, the dry weight of newly emerged wasps and that of the empty cocoons were measured for three gregarious braconid species of slightly different sizes: Glyptapanteles liparidis (Bouché), Cotesia glomerata (L.) and Cotesia kariyai (Watanabe) (Hymenoptera: Braconidae, Microgastrinae). These braconids form clusters of cocoons of different types. Glyptapanteles liparidis is significantly larger than either of the Cotesia species, and C. kariyai is the smallest. The ratio of the weight of cocoon silk to the total weight of cocoon silk, wasp body, cast cuticle and meconium is smaller for small species than large species. Small species economise on their use of silk by aggregating cocoons and can therefore invest a larger fraction of their resources in adult body mass. Moreover, the larvae of the smallest species, C. kariyai, additionally reduce their use of silk by constructing a communal airy silk layer beneath which the individual cocoons are formed.
The carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae), is a serious pest and causes a considerable loss of yield of pomegranate in Iran. Apanteles myeloenta (Hymenoptera: Braconidae) is the dominant parasitoid of this pest parasitizing it more than 30% in recent years. This parasitoid is a candidate for augmentative biological control program to reduce the level of the infestation of fruit overwinter. The objective of this research was to optimize the mass production of A. myeloenta. The mean developmental time of females was 28 days and of males 27 days. Pupal development lasted 7 days. The second instar was the preferred host and most heavily parasitized (45%). Wasps that started their development in second instar hosts produced the highest progeny and those that started in third instar hosts survived as adults for longest. The sex ratio (females to males) of A. myeloenta that emerged from carob moth larvae parasitized in the first instar was 1 : 3.5, in the second instar 1 : 3 and in the third instar 1 : 2. The influence of different host ages on the functional response of A. myeloenta to host density was assessed. Logistic regression indicated a type II functional response to different densities of all the stages of the host tested., Hossein Kishani Farahani, Seyed Hossein Goldansaz., and Obsahuje seznam literatury
Phylogenetic relationships of the braconid wasp genus Yelicones Cameron are studied using the D2-D3 region of the nuclear 28S rRNA gene, both alone and simultaneously with morphology. The results support a morphology-based phylogeny, presented elsewhere, with Yelicones being divided into two major groups corresponding to the New and Old World faunas. The African and Asian species largely form separate clades except for Yelicones wui Chen & He from China which is associated with the Afrotropical species. Potential molecular synapomorphies are illustrated.
Phylogenetic relationships among 16 genera of the subfamily Aphidiinae (Hymenoptera: Braconidae) were investigated using sequence data from three genes: the mitochondrial large ribosomal subunit (16S), 18S ribosomal DNA and mitochondrial ATPase 6. All sequences were downloaded from the GenBank database. A total of 2775 base pairs of aligned sequence were obtained per species from these three genes. The results support the existence of three-tribes: Ephedrini, Praini and Aphidiini, with the Ephedrini occupying the basal position; Aphidiini could be further subdivided into three subtribes: Monoctonina, Trioxina and Aphidiina. The genus Aphidius is a paraphyletic group. The taxonomic status of the subfamily Aphidiinae within the Braconidae is probably closer to the non-cyclostome than the cyclostome subfamilies.
Body size is a standard criterion of quality control in insect rearing and often assumed to correlate with fitness in parasitoid wasps, but various metrics of body size can be used. The purpose of this study was to determine which morphological feature provides the best correlation with body size and egg load in a thelytokous population of the parasitoid wasp, Lysiphlebus fabarum (Marshall), when reared on Aphis fabae Scopoli under standardized conditions in a growth chamber (21 ± 1°C, 60–70% RH, and 16L : 8D). Candidate metrics included head width, length and width of the pronotum, length and width of the right forewing, and length of the right hind tibia. In the first experiment, correlations were determined between these measurements and overall wasp body length. As head width and hind tibia length emerged as the most suitable proxies for total body length, the next experiment these two variables as proxies for egg load in females reared from different nymphal instars of the host aphid. There was a non-linear relationship between body size and egg load of wasps emerging from hosts parasitized in different nymphal instars. Egg load increased linearly with body size across all host growth stages, but the second nymphal instar was the most suitable stage for parasitism when speed of development was factored in. The results suggest that head width is a suitable morphometric for monitoring quality control in mass-reared cultures of this wasp., Mohammad Ameri ... [et al.]., and Obsahuje seznam literatury