DNA barcoding surveys of small insects usually extract DNA from either a complete insect or a leg. Little is known about how to optimize DNA quantity and quality from different insect parts while preserving a morphological voucher. Here, we quantify DNA yield from different body parts (antenna, hind leg, forewing, hind wing and abdomen) of the micro-moth Cameraria ohridella (Lepidoptera: Gracillariidae) using fluorescent nucleic acid stain (PicoGreen). Samples were preserved in 100% ethanol or dried for three weeks. Our experiment was designed to encompass practical sampling options during fieldwork. DNA quality was assessed by PCR amplification of the mitochondrial COI barcode fragment. In addition, we compared PCR amplification using Platinum® Taq and Qiagen DNA Polymerase and quantified sequence success of amplified DNA. We show that overall, dry parts showed higher eluted DNA yields. PCR and sequencing success rate were slightly higher for dry tissue than ethanol-preserved parts. We also show that Platinum® Taq yielded the highest PCR success rate and that all dry tissues are sequenceable. The optimal strategy for DNA barcoding surveys is therefore to mount micro-Lepidoptera specimens in the field for morphological analysis and sample tissues (hind legs are favoured) from dried samples at a later time (several weeks) in the lab for DNA barcoding using preferentially Platinum® Taq. If larger amounts of DNA are required (i.e. for nuclear gene sequencing), several legs from one side of the specimen or the abdomen should be preserved in pure ethanol., Carlos Lopez-Vaamonde ... [et al.]., and Obsahuje seznam literatury
a1_Quantitative behavioural traits associated with egg-laying, such as the level of selectivity for host-supports and the size of egg clutches, are generally thought to be of great importance for the subsequent survival and development of offspring. These quantitative traits, however, are often difficult to assess reliably by direct observation in the field. This is particularly the case when the insects are very tiny, which is the case for most galling and leaf mining insects. However, a new approach, the "Melba" procedure, allows the indirect inference of these quantitative traits, using easily recorded field-data only. Application of this diagnostic procedure to a large series of samples of beech leaves (Fagus silvatica), harbouring either a leaf miner, Phyllonorycter maestingella (Lepidoptera: Gracillariidae) or one or the other of two galling insects, Mikiola fagi or Hartigiola annulipes (Diptera: Cecidomyiidae) indicates that the leaf miner differs significantly from the two species of galling insect in term of combined values of host-acceptance ratio and average clutch-size, while the two gall-inducing species remain substantially undistinguishable from each other according to these traits. Thus, the galling insects (i) show stronger selectivity for a host than does the miner at any given average clutch-size and (ii) show larger average clutch-size at any given level of selectivity. That is, for at least these three species, the galling insects show a greater level of selectivity when choosing leaves to oviposit on but, then, tend to lay larger egg-clutches. These differences may be due (i) to the gall-inducing process requiring far more of leaf tissues than being simply palatable, which makes it likely that galling species will be more selective in their choice of leaves than leaf miners and (ii) to the capacity of galls to become nutrient sinks, which may help explain why the galling insects laid larger, a2_egg clutches. However, whether these trends can be regarded as general rather specific to this particular case, depends on the outcome of future studies on other groups of insects with similar life histories., and Jean BÉGUINOT.
This study of the proteins in the silk of the summer and winter cocoons of the horse chestnut leaf miner Cameraria ohridella revealed they can inhibit protease activity. The inhibitory activity of the summer silk was higher against both the fungal proteinase K and bacterial subtilisin than that of the winter silk. Also, the winter silk was more effective in inhibiting proteinase K than subtilisin. Further, it was demonstrated that some of the silk proteins are glycosylated probably by mannose carbohydrates. An electron microscopy study of the cocoons revealed the presence of silk fibres with different diameters in some pupal chambers. and Veronika Hněvsová, Dalibor Kodrík, František Weyda.
Poor synchronisation is considered to be one important reason for the ineffective control of the invasive horse chestnut leafminer by native parasitic Hymenoptera. Parasitoids hibernating in dry horse chestnut leaves break diapause early in spring and presumably leave the vicinity, since no hosts are available when they emerge. As a consequence, the percentage parasitism of the first generation of the leafminer in early summer is low. The experiments presented below were designed to test this hypothesis. Horse chestnut saplings were brought on in a greenhouse and infested artificially with C. ohridella prior to parasitoid emergence in the field. These saplings were then exposed to parasitoid attack under natural conditions to eliminate the synchronisation problem. In addition, the parasitoid complexes of other leafmining hosts, which appear early in the season, were analysed. The results confirm that the most important parasitoids of the horse chestnut leafminer are active early in the season, long before the larvae of the first generation of the host are present. Nevertheless, poor synchronisation with the invasive host did not significantly influence the abundance of the most important parasitoid in the complex, Minotetrastichus frontalis, and consequently had no impact on the parasitism of C. ohridella. Nevertheless, a detailed analysis of the parasitoid community shows that certain species are affected by poor synchronisation, while others are probably limited by ecological parameters, such as a specialisation to foraging in particular strata of vegetation. Several leafmining flies were found early in spring infesting other host plants commonly planted in urban green areas, including species with a parasitoid complex similar to that of C. ohridella. The role of these alternative hosts in the food web associated with the horse chestnut leafminer should be subject to further study.
This paper describes previously unreported lateral cuticle splits occurring during the moulting of larvae of the leaf-miners Pachyschelus laevigatus (Say, 1839) (Coleoptera: Buprestidae) and Cameraria sp. (Lepidoptera: Gracillariidae). In these species the cuticle does not split dorsally during the larval/larval moults as in most insects, but laterally, thus permitting the larva to leave its exuviae sideways rather than vertically. This previously overlooked phenomenon is hypothesized to have evolved independently in both taxa and is an adaptation to life in the vertically limited space of their mines and, therefore, might be found in other organisms confined to similar conditions. The exuvial split in the larva to pupa moult of Cameraria sp. taking place inside a relatively tick and firm cocoon is, however, of the regular dorso-medial type, and, therefore, two different successive types of moult occur within a single ontogenesis. For comparative purposes the common dorsal exuvial split is described and illustrated for the leaf-mining larvae of Profenusa alumna (Hymenoptera: Tenthredinidae), Sumitrosis rosea (Coleoptera: Chrysomelidae) and the free-living Satonius fui (Coleoptera: Torridincolidae)., Vasily V. Grebennikov., and Obsahuje seznam literatury
Alien phytophagous insects are often introduced along with their host plants, creating opportunities for troublesome invasions. Yet, not all of them are able to successfully colonize novel host plants. In this study, we investigated host selection by the alien leaf miner Phyllonorycter leucographella (Zeller, 1850) on both its original host and novel host plants in the insect's alien range. We predicted that this insect's percentage infestation of the original host would be positively related to its specific leaf area (SLA), because high-SLA leaves are nutritious and have thin cuticles, traits related to high offspring developmental success. We further hypothesized that this host selection process would apply in the selection of novel host plants. Our results show that this leaf miner selects leaves of its original host plant, Pyracantha coccinea, according to their SLA values. The SLA value was also positively related to the probability of P. leucographella infesting and successfully developing on novel host plants. The selection of high-SLA plants by the moth leads to a high developmental success on novel host plants in the first (summer) generation, but it is likely to be maladaptive in the second (overwintering) generation, because in temperate Europe, high SLA values are associated with deciduous plants that shed their leaves in autumn. It is likely that the apparent maladaptive selection of novel host plants by P. leucographella reduces the invasiveness of this pest by preventing its establishment on native plants., Urszula Walczak, Michał Bogdziewicz, Roma Żytkowiak, Piotr Karolewski, Edward Baraniak., and Obsahuje bibliografii
A set of six polymorphic microsatellite markers was developed for the highly invasive horse chestnut leaf-mining moth, Cameraria ohridella. For 96 positive clones, six polymorphic microsatellites with conserved flanking regions were identified. The average number of alleles per locus was eight (range from three to 12). Two of these loci showed significant heterozygosity deficits due to null alleles. The remaining four loci did not depart from Hardy-Weinberg equilibrium. In addition, all six loci were amplified for 20 other gracillariid species belonging to eight different genera, including another invasive species Phyllonorycter platani. These are the first microsatellite markers described for a species within the lepidopteran family Gracillariidae.
Horse chestnut leaf miner (Cameraria ohridella) has achieved ecological success by colonizing the entire European range of its primary host, horse chestnut (Aesculus hippocastanum). This insect has attracted the attention of scientists, but its ecology is poorly understood. Here, we investigated the effects of varying degrees of light availability on the leaf morphology of horse chestnut saplings and the performance of C. ohridella. A pot experiment under greenhouse conditions was performed in which the photosynthetic photon flux density (PPFD) was reduced from full light by 50% (high light - HL) or 80% (low light - LL). Insect performance parameters were quantified (i.e., pupal mass, efficiency of conversion of utilised leaf tissue (ECU) and potential fecundity). Compared with HL leaflets those from LL were characterised by higher contents of nitrogen and water but lower total phenolics. The oxidative capacity of phenolics (at pH ≈ 10, common in the lepidopteran gut) was low and did not differ in the two treatments. Compared with those collected from HL leaves, the mines of those collected from leaves of plants grown under LL conditions were larger in area but the leaf mass utilized by larvae was similar. Pupae were heavier in LL than in HL conditions, and ECU was higher in LL. The potential fecundity of females was not sensitive for experimental treatment. We conclude that (1) reduced light had a strong beneficial effect on the performance of C. ohridella and (2) phenolics in A. hippocastanum leaf tissues are a poor defence against this herbivore.
The horse chestnut leaf miner, Cameraria ohridella Deschka & Dimić, is a species of unknown origin that recently invaded most of Europe, causing serious damage to horse chestnut trees, Aesculus hippocastanum. Parasitism was studied over a period of three years in the region of Plzeň in the Czech Republic. Additional collections were made in Slovakia and Slovenia. The parasitoid complex, dominated by polyphagous idiobiont parasitoids of the family Eulophidae, is similar to that found in other studies in Europe. Minotetrastichus frontalis (Nees) was the most abundant parasitoid found, except in Slovakia where Pediobius saulius (Walker) dominated. One parasitoid species, the eulophid Cirrospilus diallus (Walker) was recorded for the first time from C. ohridella. A new method is proposed to calculate stage-specific and total parasitism rates. Parasitism rates of spinning larvae and pupae were higher than of feeding larvae; however, total parasitism was low. We estimated that between 1% and 17% of moths died from parasitism during the larval and pupal stages whereas the rate of mortality caused by other factors varied from 7% to 62%, depending on the locality, year and generation. The proposed method for calculating total parasitism, based on the integration of stage-specific parasitism rates, which takes into account the mortality not directly attributed to parasitism, is discussed and compared with other methods commonly used in studies on C. ohridella.
Horse chestnut trees in many regions of Europe have suffered from epidemic infestations of C. ohridella for more than ten years. There has been no obvious decrease in the infestation level anywhere on the continent. One reason is, that the native natural enemies have not been able to control mass outbreaks of the leafminer. Parasitoid Hymenoptera have very little impact on the first generation of the moth in early summer, regardless of the number of parasitoids that overwintered in horse chestnut leaves. This study revealed that there is a considerable time lag between the emergence of the parasitoids from the leaflitter in spring and the appearance of suitable host instars in early summer. The poor control of C. ohridella by natural enemies may partly be due to the poor synchronisation between the life cycles of the introduced host and native parasitoid wasps.