a1_Quantitative behavioural traits associated with egg-laying, such as the level of selectivity for host-supports and the size of egg clutches, are generally thought to be of great importance for the subsequent survival and development of offspring. These quantitative traits, however, are often difficult to assess reliably by direct observation in the field. This is particularly the case when the insects are very tiny, which is the case for most galling and leaf mining insects. However, a new approach, the "Melba" procedure, allows the indirect inference of these quantitative traits, using easily recorded field-data only. Application of this diagnostic procedure to a large series of samples of beech leaves (Fagus silvatica), harbouring either a leaf miner, Phyllonorycter maestingella (Lepidoptera: Gracillariidae) or one or the other of two galling insects, Mikiola fagi or Hartigiola annulipes (Diptera: Cecidomyiidae) indicates that the leaf miner differs significantly from the two species of galling insect in term of combined values of host-acceptance ratio and average clutch-size, while the two gall-inducing species remain substantially undistinguishable from each other according to these traits. Thus, the galling insects (i) show stronger selectivity for a host than does the miner at any given average clutch-size and (ii) show larger average clutch-size at any given level of selectivity. That is, for at least these three species, the galling insects show a greater level of selectivity when choosing leaves to oviposit on but, then, tend to lay larger egg-clutches. These differences may be due (i) to the gall-inducing process requiring far more of leaf tissues than being simply palatable, which makes it likely that galling species will be more selective in their choice of leaves than leaf miners and (ii) to the capacity of galls to become nutrient sinks, which may help explain why the galling insects laid larger, a2_egg clutches. However, whether these trends can be regarded as general rather specific to this particular case, depends on the outcome of future studies on other groups of insects with similar life histories., and Jean BÉGUINOT.
Despite their wide distribution and frequent occurrence, the spatial distribution patterns of the well-known gall-inducing insects Mikiola fagi (Hartig) and Neuroterus quercusbaccarum (L.) in the canopies of mature trees are poorly described. We made use of the Swiss Canopy Crane (SCC) near Basel, Switzerland, to gain access to the canopy of a mixed temperate forest up to a height of 35 m. Within one and a half days we scanned 6,750 beech leaves and 6,000 oak leaves. M.fagi showed a distinct vertical zonation with highest abundance in the top-most parts of the canopy as well as a significant aggregation on particular trees. N. quercusbaccarum showed an even more pronounced preference for particular trees and a general preference for Quercus robur over Q. petraea. In contrast to M. fagi, no vertical zonation could be detected. We think that both gall-inducing species have greater powers of dispersal than formerly assumed since they overwinter on the forest floor and yet are able to 1) gain access to the entire canopy, 2) show preference for certain host trees. We found little evidence for the phenological synchrony hypothesis proposed to explain the intertree distribution of N. quercusbaccarum. The highest density of M. fagi galls was in those parts of the canopy exposed to high solar radiation; their host choice is probably determined by micro-climatological factors. The consequences of the distribution patterns of N. quercusbaccarum and M. fagi for their ecological interactions with the host-plant, inquilines and parasitoids (e.g., canopy-layer specific performance linked to plant chemistry, density-dependent parasitism) need now to be subjected to further scientific investigation.